hdu3062 2-SAT

题意:很标准的求是否满足2-SAT

解法:两个人之间互相厌恶 那么我们建图的时候只需要建立i->j i^1-j^1 或者相反就可以了

留个不是tarjan的模板


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
#define maxn 20010
int n,m;                //顶点数
vector<int>rg[maxn];
vector<int>g[maxn];
vector<int>vs;        //后序遍历顺序的顶点列表
bool vis[maxn];
int scin[maxn],scout[maxn];
int cmp[maxn];        //所属强联通分量的拓扑序
void add(int from,int to){
    g[from].push_back(to);
    rg[to].push_back(from);
}
void dfs(int v){
    vis[v]=1;
    for(int i=0;i<g[v].size();++i){
        if(!vis[g[v][i]])dfs(g[v][i]);
    }
    vs.push_back(v);
}
void rdfs(int v,int k){
    vis[v]=1;
    cmp[v]=k;
    for(int i=0;i<rg[v].size();++i){
        if(!vis[rg[v][i]]){rdfs(rg[v][i],k);}
    }
}
int scc()
{
    memset(vis,0,sizeof vis);
    memset(cmp,0,sizeof cmp);
    vs.clear();
    for(int i=0;i<n;i++){
        if(!vis[i])dfs(i);
    }
    memset(vis,0,sizeof vis);
    int k=0;
    for(int i=(int)vs.size()-1;i>=0;i--){
        if(!vis[vs[i]])rdfs(vs[i],k++);
    }
    return k;
}
void build(){
    for(int i=0;i<=n;++i){g[i].clear();rg[i].clear();}
    int a,b,c,d;
    for(int i=0;i<m;++i){
        scanf("%d%d%d%d",&a,&b,&c,&d);
        //            add((a<<1)+c,(b<<1)+(1-d));
        //            add((b<<1)+d,(a<<1)+(1-c));
        
        add((b<<1)+(1-d),(a<<1)+c);
        add((a<<1)+(1-c),(b<<1)+d);
    }
}
int judge(){
    int sc=scc();
    int fl=1;
    for(int i=0;i<n;i+=2){
        if(cmp[i]==cmp[i^1]){
            fl=0;
            break;
        }
    }
    return fl;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
//        if(!n&&!m)break;
        n<<=1;
        build();
        if(judge())printf("YES\n");
        else   printf("NO\n");

    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值