CNN补充知识

CNN的三大特色:局部感知、权重共享和多卷积核

1、局部感知

感受野的概念:

在神经网络中,每个神经元都是从上一层中的一些位置接收输入,在全连接层中,每个神经元从每一个元素位置接收输入。在卷积层,神经元仅仅从上一层的有限局部区域接收输入,这个区域是个方形区域(比如5×5),神经元的输入部分被称为感受野。在全连接层,感受野是整个前一层。随着网络体系结构的深入,接收区域中原始输入图像的子区域越来越多。这是由于一遍又一遍地应用了一个卷积,该卷积既考虑了特定像素的值,也考虑了周围像素的值。

局部感知

局部感知就是我们上面说的感受野,实际上就是卷积核和图像卷积的时候,每次卷积核所覆盖的像素只是一小部分,是局部特征,所以说是局部感知。CNN是一个从局部到整体的过程(局部到整体的实现是在全连通层),而传统的神经网络是整体的过程。

维基百科中的解释

在这里插入图片描述在这里插入图片描述

2、权重共享

不同的图像或者同一张图像共用一个卷积核,减少重复的卷积核。同一张图像当中可能会出现相同的特征,共享卷积核能够进一步减少权值参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值