CNN的三大特色:局部感知、权重共享和多卷积核
1、局部感知
感受野的概念:
在神经网络中,每个神经元都是从上一层中的一些位置接收输入,在全连接层中,每个神经元从每一个元素位置接收输入。在卷积层,神经元仅仅从上一层的有限局部区域接收输入,这个区域是个方形区域(比如5×5),神经元的输入部分被称为感受野。在全连接层,感受野是整个前一层。随着网络体系结构的深入,接收区域中原始输入图像的子区域越来越多。这是由于一遍又一遍地应用了一个卷积,该卷积既考虑了特定像素的值,也考虑了周围像素的值。
局部感知
局部感知就是我们上面说的感受野,实际上就是卷积核和图像卷积的时候,每次卷积核所覆盖的像素只是一小部分,是局部特征,所以说是局部感知。CNN是一个从局部到整体的过程(局部到整体的实现是在全连通层),而传统的神经网络是整体的过程。
维基百科中的解释
2、权重共享
不同的图像或者同一张图像共用一个卷积核,减少重复的卷积核。同一张图像当中可能会出现相同的特征,共享卷积核能够进一步减少权值参数。