知识蒸馏
Distilling the Knowledge in a Neural Network
这篇文章是2015年Hiton大神完成的一项黑科技技术,其第一次涉及了知识蒸馏(暗知识提取)的概念。可以从迁移学习和模型压缩的角度去理解这件事。
重点在于提出soft target来辅助hard target一起训练,而soft target来自于大模型的预测输出,为什么要用soft target?因为hard target包含的信息量(信息熵)很低,soft target包含的信息量比较大,拥有不同类之间关系的信息(比如同时分类驴和马的时候,尽管某张图片是马,但是soft target 不会像hard target那样只有马的index为1,其余为0,而可能是0.98和0.02)这样做的好处是,这个图像可能更像驴,而不是像汽车或者狗之类的,这样的soft概率存在于概率中,以及label之间的高低相似性都存在于soft target中,但是如果soft target是像这样的信息(0.98,0.01,0.01),就意义不大了,所以需要在softmax中增加温度参数T(这个设置在最终训练完之后的推理中是不需要的)
神经网络模型在预测最终的分类结果时,往往是通过softmax函数产生概率分布的,这里的T定义为温度参数,是一个超参数,qi是第i类的概率值大小
Loss 值为: