统计中文分词(最大熵)

在机器学习中,序列标注(Sequence labeling)是一种常见的模式识别任务,它用来给一组可观察对象打上状态(类别)标签。它可以解决NLP中的分词(Word Segement)、词性标注(Part-Of-Speech Tagging)、命名实体识别(Named Entity Recognition )等问题。常见的概率统计模型有:HMM、MEMM、CRF。
下面介绍利用最大熵统计算法进行分词的步骤。

第一步:工具包开发环境搭建

下载MEMM工具包,这里利用的是张乐博士最大熵模型工具包,参照里面的INSTALL步骤安装,同时,参照python文件夹的README安装python相关的包(Python extension of the C++ Maximum Entropy Modeling Toolkit)。

第二步:准备语料

这里利用的是SIGHAN提供的backoff 2005语料,将熟语料转换成工具包所需格式,即4-tag(BMES)格式。可参考52NLP网站的python代码<

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值