随机森林算法(Random Forest Algorithm)是一种常用的机器学习算法,它将多个决策树(Decision tree)的输出结合起来,得到一个单一的结果。它处理分类和回归问题,因为它结合了决策树的简单性和灵活性,从而显著提高了准确性。
AdaBoost算法(Adaptive Boosting)是一种用于集成机器学习系统的Boosting方法。在每一轮中,每棵树的权重会被重新分配,对错误分类的条件赋予更高的权重,因此被称为自适应Boosting。AdaBoost使用多个单层决策树,称为树的森林。
随机森林和AdaBoost的区别
树的大小
在随机森林中, 每次你做出一棵树,你就做出了一棵完整的树。有些树可能比其他树大,但没有预先确定的最大深度。
相比之下,在使用AdaBoost制作的树木森林中,树木通常只是一个节点和两个叶子。只有一个节点和两个叶子的树被称为树桩,所以树木的森林实际上就是树桩森林。