图像无损压缩算法及Matlab实现

727 篇文章 ¥59.90 ¥99.00
本文介绍了图像无损压缩的重要性,包括基于预测(差分编码)和基于变换(离散余弦变换DCT)的两种常见算法,并提供了Matlab代码示例,有助于理解并应用这些压缩技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像无损压缩算法及Matlab实现

图像无损压缩是一种可以在不损失图像质量的前提下,通过减小图像所占用的存储空间来节省存储资源的技术。在实际应用中,由于图像所占用的存储空间通常相对较大,因此对图像进行无损压缩是一种必要的手段。

本文将介绍两种常见的图像无损压缩算法:基于预测的算法和基于变换的算法,并且结合实例提供Matlab代码实现。

一、基于预测的算法

基于预测的算法是一种常用的图像无损压缩算法,其原理是通过预测图像中每个像素的值,从而消除冗余信息,实现数据压缩。常见的预测方法有四种:差分编码、行程编码、霍夫曼编码和算术编码。

其中,差分编码是最为简单和直接的预测方法。它基于当前像素与其周围像素的关系,用当前像素的值减去周围像素的平均值来得到预测值,再将预测值和实际值的差作为编码输出。这种方法的优点是计算简单,并且对于大多数图像都能产生较好的压缩效果。

以下是基于差分编码的Matlab实现代码:

% 图像差分编码压缩
I = rgb2gray(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值