图像无损压缩算法及Matlab实现
图像无损压缩是一种可以在不损失图像质量的前提下,通过减小图像所占用的存储空间来节省存储资源的技术。在实际应用中,由于图像所占用的存储空间通常相对较大,因此对图像进行无损压缩是一种必要的手段。
本文将介绍两种常见的图像无损压缩算法:基于预测的算法和基于变换的算法,并且结合实例提供Matlab代码实现。
一、基于预测的算法
基于预测的算法是一种常用的图像无损压缩算法,其原理是通过预测图像中每个像素的值,从而消除冗余信息,实现数据压缩。常见的预测方法有四种:差分编码、行程编码、霍夫曼编码和算术编码。
其中,差分编码是最为简单和直接的预测方法。它基于当前像素与其周围像素的关系,用当前像素的值减去周围像素的平均值来得到预测值,再将预测值和实际值的差作为编码输出。这种方法的优点是计算简单,并且对于大多数图像都能产生较好的压缩效果。
以下是基于差分编码的Matlab实现代码:
% 图像差分编码压缩
I = rgb2gray(