Python3中的list、np.array和DataFrame的初始化、属性和切片

本文详细介绍了Python3中list、np.array和DataFrame的初始化方法以及切片操作。对于DataFrame,分别讲解了使用中括号、loc和iloc方法进行切片的规则,并探讨了这些切片操作是否会影响原始数据。
摘要由CSDN通过智能技术生成

1. list

list = [[1],
        [2],
        [3],
        [4],
        [5]]
print(list)
print(len(list))  # 行数
print(len(list[0]))  # 列数

结果:

[[1], [2], [3], [4], [5]]
5
1

2. np.array

初始化和属性
arr1 = np.array([1,2,3,4,5])
print('--------------arr1--------------')
print(arr1.shape)
print(arr1)

arr2 = np.array([[1,2,3,4,5], [13,23,33,43,53]])
print('--------------arr2--------------')
print(arr2.shape)
print(arr2)

arr3 = np.array([[1], [2], [3], [4], [5]])
print('--------------arr3--------------')
print(arr3.shape)
print(arr3)

结果

--------------arr1--------------
(5,)
[1 2 3 4 5]
--------------arr2--------------
(2, 5)
[[ 1  2  3  4  5]
 [13 23 33 43 53]]
--------------arr3--------------
(5, 1)
[[1]
 [2]
 [3]
 [4]
 [5]]

3. DataFrame

3.1 初始化

# 使用一维数组初始化df,结果df为1列
print('--------------df1--------------')
arr1 = np.array([1, 2, 3, 4, 5])
df1 = pd.DataFrame(arr1)
print(arr1)
print(arr1.shape)
print(df1)

# 使用(5,3)的二维的np.array初始化df,df的列数等于array的列数
print('--------------df2--------------')
df2 = pd.DataFrame(np.ones([5, 3]), columns=['col_1', 'col_2', 'col_3'])
print(df2)

# 用(5,1)的二维数组初始化df
print('--------------df3--------------')
arr3 = np.array([[1], [2], [3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值