
Topic推荐
文章平均质量分 51
AMiner:AI科研助手
聚焦科研检索、阅读、分析、写作场景,以对话重构繁杂的科研流程,打造极简易用的科研工作流,让信息和知识有效链接和流动起来,为全球科研机构、学者和科技从业者做科研加速。
展开
-
【深度学习在智能机器人中的应用】论文合集推荐丨CMU新型机器人算法可操纵所有日常家具
机器人发展的趋势是人工智能化,深度学习是智能机器人的前沿技术,也是机器学习领域的新课题。原创 2022-06-09 12:01:37 · 1023 阅读 · 1 评论 -
【文本生成】论文合集推荐丨 斯坦福研究者引入时间控制方法 长文本生成更流畅
在近期的一项研究中,斯坦福大学的一个研究小组提出了时间控制 (TC),这种语言模型通过潜在的随机过程进行隐式计划,并生成与该潜在计划一致的文本,以提高长文本生成的性能。我们一起来了解一下其中的文本生成:文本生成是自然语言处理中一个重要的研究领域,具有广阔的应用前景。国内外已经有诸如Automated Insights、Narrative Science以及“小南”机器人和“小明”机器人等文本生成系统投入使用。这些系统根据格式化数据或自然语言文本生成新闻、财报或者其他解释性文本。AMiner为您准备了【.原创 2022-05-24 15:12:33 · 431 阅读 · 0 评论 -
【一千个论文合集】计算机科学的26个细分领域近年必读论文集合
AMiner必读论文是一个可以帮您了解某个领域、机构、期刊、会议的学术专辑,包括必读论文和代表学者,由AI初筛+学者复核后提供给您,您可以收藏为自己的论文清单原创 2022-05-11 15:17:34 · 20343 阅读 · 1 评论 -
【基于机器学习/深度学习的睡眠信号分类】主题必读论文推荐
一项由韩国、比利时等合作的最新脑科学研究发现,利用深度学习可以量化意识,研究对睡眠、麻醉、脑损伤等不同状况都获得了实验数据。现在,科学家对人类意识有了新认识!这次的研究,是通过深度学习算法的AI方式来揭开谜题。竟然!睡眠、全身麻醉、严重脑损伤等不同状况下的意识,都得了有效测量……原创 2022-04-29 11:50:25 · 1899 阅读 · 0 评论 -
【深度神经网络】主题论文推荐
深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础,是深度学习的一种框架。它是一种具备至少一个隐层的神经网络,与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。以下论文供大家参考学习:1.Universality of Deep Convolutional Neural Networks.本文研究展示了深度卷积神经网络(CNN)是通用的,这意味着当神经网络的深度足够大时,它可以用来将任何连.原创 2022-04-26 11:08:09 · 1152 阅读 · 0 评论 -
离群/异常/新类检测?开集识别?分布外检测?一文搞懂其间异同!
你是否也曾迷惑于“离群检测”,“异常检测”,“新类检测”,“开集识别”,“分布外检测”之间错综复杂的关系?你是否也想要解决开放世界的问题却不知道从哪个任务入手?不知道利用什么方法解决问题?这篇最新综述将拨云见日,让你对开放世界领域有全新的认识!在开放世界中分类是验证模型安全性的重要方式,也是一个真正能够商用落地的模型不可避免要面对的问题。传统的分类模型都是在一个封闭的世界中进行训练,即假设测试数据和训练数据都来自同样的分布(称作“分布内”,in-distribution)。例如我们利用一组猫狗照片训.原创 2021-10-28 12:05:24 · 925 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Exploring the Limits of Large Scale Pre-training论文链接:https://www.aminer.cn/pub/615d13fe5244ab9dcb637c5a?f=cs来自谷歌的研究者系统地研究了这种现象,并确定随着上游任务准确率的提高,下游任务的性能会达到饱和。特别是,该研究探索了超过 4800 关于 Vision Transformer、MLP-Mixer 和 ResNets 的实验,这些模型的参数数量从一千万到一百亿不等,同时,他们在最大规原创 2021-10-25 16:31:27 · 176 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Exploring the Representativity of Art Paintings论文链接:https://www.aminer.cn/pub/5ff682bed4150a363cbae759?f=cs随着数字技术的发展,越来越多的数字化艺术图像让公众可以更方便欣赏艺术作品。使用谷歌Chrome,人们可以得到关于一个特定的艺术家很多图片。不幸的是,浏览器推荐的画作大量地重复,并夹杂着虚假的例子。为了解决网上数字画作的杂乱和混淆问题,在本研究中,我们重点做一些艺术作品评价任务。我们的原创 2021-10-21 15:09:00 · 127 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Temporal Constraint Background-Aware Correlation Filter With Saliency论文链接:https://www.aminer.cn/pub/5ff685f3d4150a363cc1a494?f=cs当前的相关滤波类算法受到两个因素的制约:1)表示目标的矩形块中包含部分背景信息,这部分背景信息也被当做目标的一部分,在训练滤波器模型的时候,它们与真正的目标以相同的权重参与训练,导致模型受到污染,当目标发生剧烈形变时容易发生跟踪漂移;2)滤原创 2021-10-21 15:08:07 · 125 阅读 · 0 评论 -
AMiner论文推荐
论文名称:PFAN++: Bi-Directional Image-Text Retrieval With Position Focused Attention Network论文链接:https://www.aminer.cn/pub/5ff686ecd4150a363cc3cc1d?f=cs现有的图文匹配方法大多只关注于图片中物体的视觉特征,而忽视了物体的相对位置的重要性。我们观察发现,图片中物体的相对位置可以指示物体对于图片语义表达的重要程度,对于图片语义最重要的物体位于图片的中心,基于这个观察,原创 2021-10-21 15:07:19 · 126 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Quality Evaluation for Image Retargeting With Instance Semantics论文链接:https://www.aminer.cn/pub/5ff682e1d4150a363cbb6141?f=cs图像重定向作为一种内容自适应的后处理技术,可以根据图像内容的重要程度选择性去除图像内容,从而满足不同尺寸屏幕的显示需求。然而该过程中不可避免地会产生失真,影响重定向图像的感知质量。不同于噪声、模糊、块效应等传统失真,重定向图像失真往往表现为图像内容扭原创 2021-10-21 15:06:33 · 122 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Self-Supervised Pretraining of 3D Features on any Point-Cloud论文链接:https://www.aminer.cn/pub/5ff8396091e0116ed225e37c?f=cs自监督学习一直是研究界和FAIR的主要兴趣领域, DepthContrast也是业界在不使用标记数据的情况下学习强大3D表示的最新尝试。这项研究继承自FAIR 之前的工作PointContrast,也是3D的一种自我监督技术。 现在获得3D数据的机会很多原创 2021-10-20 16:31:46 · 145 阅读 · 0 评论 -
AMiner论文推荐
论文名称:A Partition Filter Network for Joint Entity and Relation Extraction论文链接:https://www.aminer.cn/pub/612c4c295244ab9dcbca2392?f=cs在实体关系抽取中,前人在编码任务特征上大致上可以划分为两类:序列编码(Sequential Encoding)和平行编码(Parallel Encoding)。序列编码一般按先NER再RE的先后顺序对任务特征进行编码,这种编码方式会使得后编码原创 2021-10-20 16:30:14 · 167 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships论文链接:https://www.aminer.cn/pub/6153e35a5244ab9dcb3d3922?f=cs从基因组规模的信息中准确预测复杂的表型特征是一个挑战。有几个因素导致了这些挑战。首先,与越来越多的组学数据的可用性相反,从充分代表表型多样性空间的遗传多样性人群中收集原创 2021-10-20 16:29:15 · 120 阅读 · 0 评论 -
AMiner论文推荐
论文名称:NON-DEEP NETWORK论文链接:https://www.aminer.cn/pub/616ce5a05244ab9dcbacfa96?f=cs本文是普林斯顿大学的Jia Deng团队的最新力作ParNet:它凭借12层的深度网络在ImageNet上达到了80.7%的top-1精度 。所提ParNet以RepVGG的模块为出发点,同时提出了针对非深度网络设计的SSE模块构建了一种新型的模块RepVGG-SSE 。所提方案凭借非常浅的结构取得了非常高的性能,比如:ImageNet的80原创 2021-10-20 16:27:30 · 137 阅读 · 0 评论 -
AMiner必读论文集推荐#网页挖掘#
AMiner必读论文集推荐#网页挖掘#论文集地址; https://www.aminer.cn/topic/5e7ef61ac1b7e55a5aea64d4f=csWeb挖掘是数据挖掘在Web上的应用,它利用数据挖掘技术从与WWW相关的资源和行为中抽取感兴趣的、有用的模式和隐含信息,涉及Web技术、数据挖掘、计算机语言学、信息学等多个领域,是一项综合技术。AMiner,让AI帮你理解科学:https://www.aminer.cn...原创 2021-09-24 19:20:08 · 159 阅读 · 0 评论 -
AMiner必读论文集推荐#特征提取#
AMiner必读论文集推荐#特征提取#论文集地址:https://www.aminer.cn/topic/5e7d9a78ea0348b7e22eddaa?f=cs在机器学习,模式识别和图像处理中,特征提取从一组初始测量数据开始,并构建旨在提供信息和非冗余的派生值(特征),促进后续学习和泛化步骤。AMiner,让AI帮你理解科学:https://www.aminer.cn...原创 2021-09-24 19:19:19 · 218 阅读 · 0 评论 -
AMiner必读论文推荐#图挖掘#
论文集地址:https://www.aminer.cn/topic/5e7d9a78ea0348b7e22edd77?f=cs图挖掘的工具和技术用于(a)分析实际图形的性质,(b)预测给定图的结构和性能可能会影响一些应用程序,和©开发模型可以生成现实的模式匹配的图形中发现真实的图形。AMiner,让AI帮你理解科学:https://www.aminer.cn...原创 2021-09-15 10:53:59 · 250 阅读 · 0 评论 -
AMiner必读论文推荐#理论计算机科学#
论文集地址:https://www.aminer.cn/topic/5e7ed98a3357bd9befb4ae19?f=cs理论计算机科学是计算机科学的一个分支,它主要研究有关计算的相对更抽象化,逻辑化和数学化的问题,例如计算理论,算法分析,以及程序设计语言的语义。尽管理论计算机科学本身并非一个单独的研究主题,从事这个领域的研究人员在计算机科学的研究者里自成一派。AMiner,让AI帮你理解科学:https://www.aminer.cn...原创 2021-09-15 10:53:05 · 158 阅读 · 0 评论 -
AMiner必读论文推荐#纵向联邦学习#
论文集地址:https://www.aminer.cn/topic/6041cd4892c7f9be2178a235?f=cs纵向联邦学习(vertical federated learning)在两个数据集的用户重叠较多而用户特征重叠较少的情况下,我们把数据集按照纵向(即特征维度)切分,并取出双方用户相同而用户特征不完全相同的那部分数据进行训练。这种方法叫做纵向联邦学习。比如有两个不同的机构,家是某地的银行,另一家是同一个地方的电商。它们的用户群体很有可能包含该地的大部分居民因此用户的交集较大。但是,由原创 2021-09-15 10:52:00 · 348 阅读 · 0 评论 -
AMiner论文推荐
AMiner论文推荐论文标题:FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS论文链接:https://www.aminer.cn/pub/613586d45244ab9dcbd3a2fa?f=cs本文中,Quoc Le 等来自谷歌的研究者探索了一种简单的方法来提高大型语言模型在零样本情况下的性能,从而扩大受众范围。他们认为 NLP 任务可以通过自然语言指令来描述,例如「这部影评的情绪是正面的还是负面的?」或者「把『how are you』译成汉语」。原创 2021-09-14 11:48:39 · 120 阅读 · 0 评论 -
AMiner论文推荐
论文标题:Towards Out-of-Distribution Generalization: A Survey论文链接:https://www.aminer.cn/pub/612eef555244ab9dcbe12821?f=cs经典的机器学习方法是建立在独立同分布假设的基础上的。然而在真实场景中,独立同分布假设很难得到满足,导致经典机器学习算法在分布偏移下的性能急剧下降,这也表明研究分布外泛化问题的重要性。分布外泛化(Out-of-Distribution Generalization)问题针..原创 2021-09-14 11:48:04 · 303 阅读 · 0 评论 -
AMiner论文推荐
AMiner论文推荐论文标题:Towards a Theoretical Framework of Out-of-Distribution Generalization论文链接:https://www.aminer.cn/pub/60c2db2791e0117e30ca281e?f=cs对非独立同分布数据的泛化问题(Out-of-distribution Generalization)是现代机器学习的核心问题之一。最近,有大量的工作提出基于提取不变特征思想的OOD算法。虽然直观上是合理的,但是对于什么原创 2021-09-14 11:47:19 · 173 阅读 · 0 评论 -
AMiner论文推荐
AMiner论文推荐论文标题: Out-of-Distribution Generalization via Risk Extrapolation论文链接:https://www.aminer.cn/pub/5e5f7c4791e011df604ec969?f=cs在将机器学习预测模型从实验室转移到真实场景时,分布偏移(distributional shifts)是主要障碍之一。为了解决这个问题,我们假设跨训练环境的变化可以反映测试时数据分布的变化,但在测试时分布的变化可能更加极端。特别地,我们提出,原创 2021-09-14 11:46:26 · 308 阅读 · 0 评论 -
AMiner论文推荐
AMiner论文推荐论文标题:Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling论文链接:https://www.aminer.cn/pub/6114cf655244ab9dcb07e9df?f=cs近期,归一化流(Normalizing Flow)模型在底层视觉领域取得了惊人的效果。在图像超分辨率上(image SR),可以用来从低分辨率图像中预测出细节不同原创 2021-09-10 18:30:10 · 234 阅读 · 0 评论 -
AMiner论文推荐
AMiner论文推荐论文标题:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows论文链接:https://www.aminer.cn/pub/605dbaf191e0113c28655a7f?f=csSwin Transformer 提出了一种针对视觉任务的通用的 Transformer 架构,Transformer 架构在 NLP 任务中已经算得上一种通用的架构,但是如果想迁移到视觉任务中有一个比较大的困难就原创 2021-09-10 18:29:18 · 117 阅读 · 0 评论 -
AMiner论文推荐
AMiner论文推荐论文标题:Hire-MLP: Vision MLP via Hierarchical Rearrangement论文链接:https://www.aminer.cn/pub/612d9dd25244ab9dcbdfb442?f=cs本文提出一种简单且有效的分层重排(Hierarchical Rearrangement)MLP架构Hire-MLP。已有MLP架构(如MLP-Mixer)对于不同图像尺寸的输入不够灵活,对于捕获空间信息不够高效。Hire-MLP通过引入分层重排聚合全局原创 2021-09-10 18:26:01 · 172 阅读 · 0 评论 -
AMiner论文推荐:
AMiner论文推荐:论文标题:DMotion: Robotic Visuomotor Control with Unsupervised Forward Model Learned from Videos论文链接:https://www.aminer.cn/pub/6047519991e0116b67c79107?f=cs在机器人控制、基于模型的强化学习领域,学习环境的模型是重要的问题。现有方法学习环境模型通常需要大量从环境中采集的带标签的数据,如智能体动作、物体位置、运动的真实标注,在许多现实场景原创 2021-09-09 16:22:15 · 121 阅读 · 0 评论 -
AMiner论文推荐:
AMiner论文推荐:论文标题:CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds论文链接:https://www.aminer.cn/pub/60701efb91e01101ef3d8a42?f=cs物体位姿包含相机坐标系下物体的三维平移与三维旋转,在计算机视觉与机器人学中有着广泛应用,如指导机器人抓取与操纵物体,在增强现实中将虚拟内容叠加在真实物体上等。不同于只能应用于已知原创 2021-09-09 16:21:26 · 146 阅读 · 0 评论 -
AMiner论文推荐:
AMiner论文推荐:论文标题:A Unified Objective for Novel Class Discovery论文链接:https://www.aminer.cn/pub/612332785244ab9dcb379931?f=cs经典的图像分类任务根据图像是否具有类别标签主要分为三大类,一是所有图像都具有类别标签的完全有监督学习;二是所有图像都没有类别标签的完全无监督学习,通常可采用自监督学习或者聚类的方法;三是部分图像具有标签的半监督学习,在这种设定下,有标签和无标签图像的类别是共享的。原创 2021-09-09 16:20:29 · 141 阅读 · 0 评论 -
AMiner论文推荐:
AMiner论文推荐:论文标题:Differentially Private Federated Knowledge Graphs Embedding论文链接:https://www.aminer.cn/pub/6139764e9e795ece45bba50b?f=cs知识图谱嵌入在知识表示、推理和数据挖掘等应用中起着十分重要的作用。然而,对于多个跨领域的知识图谱来说,目前最先进的嵌入模型无法在保护数据交换过程中产生的隐私的同时,充分利用来自不同知识领域的数据和信息。并且集中式的嵌入模型无法拓展到广泛原创 2021-09-09 16:19:35 · 264 阅读 · 0 评论 -
AMiner论文推荐
论文标题:Rank & Sort Loss for Object Detection and Instance Segmentation论文链接:https://www.aminer.cn/pub/60ff9e095244ab9dcb022726?f=cs本文作者提出了一种用于目标检测和实例分割任务的Rank & Sort Loss,能够简化原来模型训练的复杂性,并能使得模型达到更好的performance。论文已开源。AMiner,让AI帮你理解科学!...原创 2021-08-27 17:12:33 · 147 阅读 · 0 评论 -
AMiner论文推荐
论文标题:Graph Neural Networks: Methods, Applications, and Opportunities论文链接:https://www.aminer.cn/pub/6125b0155244ab9dcb38b757f=cs图神经网络综述论文,来自印度国家理工学院,本文提供了图神经网络(GNN)在每种学习设置中的全面综述: 监督学习、无监督学习、半监督学习和自监督学习。每个基于图的学习设置的分类提供了属于给定学习设置的方法的逻辑划分。从理论和实证两方面分析了每个学习任务的方原创 2021-08-27 17:11:45 · 169 阅读 · 0 评论 -
AMiner论文推荐
论文标题:Residual Attention: A Simple but Effective Method for Multi-Label Recognition论文链接:https://www.aminer.cn/pub/610cb0785244ab9dcb1cd8f7f=cs一种简单但是有效的多标签图像识别方法,仅用 4 行代码,CSRA 可以在许多不同的预训练模型和数据集上实现一致的改进,而无需任何额外的训练。既易于实现又易于计算,还具有直观的解释和可视化。AMiner,让AI帮你理解科学!原创 2021-08-27 17:10:54 · 121 阅读 · 0 评论 -
AMiner论文推荐
论文题目:A Survey on Document-level Machine Translation: Methods and Evaluation论文链接:https://www.aminer.cn/pub/5dfb4b2f3a55acc4878bd2e7?f=cs概述:这篇综述论文的目的是突出神经革命后在文档级机器翻译领域所做的主要工作,以便研究人员能够识别该领域的当前状态和未来方向。研究过程和方法: 机器翻译是自然语言处理中的一项重要任务,它使翻译过程自动化,减少了对人工翻译的依赖。随着神经网原创 2021-08-26 15:37:25 · 142 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning论文链接:https://www.aminer.cn/pub/5eec90579fced0a24b957704?f=cs概述:肝细胞癌(Hepatocellular carcinoma:HCC)是肝癌中最常见的亚型,每年在全球平均都有100多万人死亡。本文先将来自基因组数原创 2021-08-26 15:32:38 · 162 阅读 · 0 评论 -
AMiner论文推荐
论文名称:Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks论文链接:https://www.aminer.cn/pub/5db9297d47c8f766461f7bb9?f=cs概述:由于BERT的结构不合适做语义相似度研究比较以及聚类这样的无监督任务。作者提出Sentence-BERT(SBERT)用孪生网络(或者Triplet网络,可以理解孪生网络的进阶版)得到句子向量的语义,进而可以通过求cosine比较句子嵌入的相似度。原创 2021-08-26 14:57:19 · 122 阅读 · 0 评论 -
AMiner论文推荐
论文题目:N-BEATS: Neural basis expansion analysis for interpretable time series forecasting基于离线偏好的学徒学习简介:本文研究了如何使用先前(可能是随机的)经验的离线数据集来解决自主系统在努力向人类学习、适应和协作时面临的两个挑战:(1)识别人类的意图和(2)安全地优化自治系统的行为以实现这种推断的意图。首先,本文使用离线数据集通过基于池的主动偏好学习有效地推断人类的奖励函数。其次,鉴于这个学习奖励函数,本文执行离线强化学原创 2021-08-26 11:34:25 · 163 阅读 · 0 评论 -
AMiner论文推荐
论文标题:Structured World Belief for Reinforcement Learning in POMDP论文链接:https://www.aminer.cn/pub/60bdde338585e32c38af521e?f=cs简介:以对象为中心的世界模型提供了场景的结构化表示,可以成为强化学习和规划的重要支柱。然而,由于缺乏信念状态,现有的方法在部分可观察的环境中受到影响。本文提出了结构化世界信念,一种以对象为中心的信念状态学习和推理模型。通过序贯蒙特卡罗(SMC)推断,该信念状态原创 2021-08-26 11:33:24 · 124 阅读 · 0 评论 -
AMiner论文推荐
论文标题:Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning论文链接:https://www.aminer.cn/pub/60f77fa35244ab9dcb3920e1?f=cs简介:本文研究了安全离线强化学习(RL) 的问题,其目标是通过学习一种策略,在满足仅给定离线数据的情况下最大化长期奖励,且同时满足安全约束,而无需与环境进一步交互。此问题对真实环境中的 RL 应用更具吸引力,因为实际应用中数据收集成本原创 2021-08-26 11:32:33 · 142 阅读 · 0 评论