计算机视觉图像方向面试
文章平均质量分 72
orangezs
这个作者很懒,什么都没留下…
展开
-
[计算机视觉]-MSE、MEA、L1、L2、smooth L1解释及优缺点
MAE损失函数MAE=∑i=1n∣yi−yip1∣nM A E=\frac{\sum_{i=1}^{n} \mid y_{i}-y_{i}^{p_{1}} \mid}{n}MAE=n∑i=1n∣yi−yip1∣以分类问题举例。对于上式中,yiy_{i}yi代表真实值,yipy_{i}^{p}yip代表预测值。下面是一个MAE函数的图,其中真实目标值为100,预测值在-10,000至10,000之间。预测值(X轴)= 100时,MSE损失(Y轴)达到其最小值。损失范围为0至∞。优点原创 2021-05-31 14:26:15 · 6722 阅读 · 1 评论 -
[pytorch]-torchvision.transforms.Compose()介绍及相关代码实例理解数据变换
简介torchvision是pytorch的一个图形库,它服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision.transforms主要是用于常见的一些图形变换。以下是torchvision的构成:1.torchvision.datasets: 一些加载数据的函数及常用的数据集接口;2.torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;3.torchvision.transforms: 常用的图原创 2021-03-30 15:25:04 · 6434 阅读 · 1 评论 -
[pytorch]-语句知识点整理-长期更新
目录1._, predicted = torch.max(outputs.data, 1)理解2.model.train()和model.eval()用法和区别3.with torch.no_grad() 详解4.model.zero_grad() vs optimizer.zero_grad()5. images.to(device)6.DataLoader函数7.parameters requires_grad=False和optimizer优化参数8. x = x.view(x.size(0), -1原创 2021-03-29 19:06:29 · 376 阅读 · 0 评论