神经网络控制系统设计,神经网络技术及其应用

bp神经网络研究现状

BP网络的误差逆传播算法因有中间隐含层和相应的学习规则,使得它具有很强的非线性映射能力,而且网络的中间层数、各层神经元个数及网络的学习系数等参数可以根据实际情况设定,有很大的灵活性,且能够识别含有噪声的样本,经过学习能够把样本隐含的特征和规则分布在神经网络的连接权上。

总的说来,BP网络的优点主要有:(1)算法推导清楚,学习精度较高;(2)经过训练后的BP网络,运行速度很快,有的可用于实时处理;(3)多层(至少三层)BP网络具有理论上逼近任意非线性连续函数的能力,也就是说,可以使多层前馈神经网络学会任何可学习的东西,而信息处理的大部分问题都能归纳为数学映射,通过选择一定的非线性和连接强度调节规律,BP网络就可解决任何一个信息处理的问题。

目前,在手写字体的识别、语音识别、文本一语言转换、图像识别以及生物医学信号处理方面已有实际的应用。

同时BP算法与其它算法一样,也存在自身的缺陷:(1)由于该算法采用误差导数指导学习过程,在存在较多局部极小点的情况下容易陷入局部极小点,不能保证收敛到全局最小点:(2)存在学习速度与精度之间的矛盾,当学习速度较快时,学习过程容易产生振荡,难以得到精确结果,而当学习速度较慢时,虽然结果的精度较高,但学习周期太长:(3)算法学习收敛速度慢;(4)网络学习记忆具有不稳定性,即当给一个训练好的网络提供新的学习记忆模式时,将使已有的连接权值打乱,导致已记忆的学习模式的信息消失;(5)网络中间层(隐含层)的层数及它的单元数的选取无理论上的指导,而是根据经验确定,因此网络的设计有时不一定是最佳的方案。

谷歌人工智能写作项目:爱发猫

神经网络研究现状

光谱分析因其能够灵敏、高精度、无破坏、快速地检测物质的化学成分和相对含量而广泛应用于分析化学、生物化学与分子生物学、农业、医学等领域写作猫

目前,光谱分析技术日趋成熟,引入光谱分析理论的高光谱遥感技术应用日益广泛,尤其是在农业领域,可以有效地获取农田信息、判断作物长势、估测作物产量、提取病害信息。

光谱分析技术虽然具有很强的物质波谱“透视力”,但在分析“同谱异物”和“异物同谱”等方面需要与现代分析手段相结合,如小波变换、卡尔曼滤波、人工神经网络(ArtificialNeuralNet-work,ANN)、遗传算法(GeneticAlgorithm,GA)等。

在光谱分析领域,ANN多用于物质生化组分的定量分析(陈振宁等,2001;印春生等,2000),在光度分析中也有较多应用,如,于洪梅等(2002)利用ANN分析铬和锆的混合吸收光谱,并结合分光度法对二者进行测定。

ANN在非线性校准与光谱数据处理等方面也有应用(Blank,1993;方利民等;2008)。

而在模式识别中ANN应用最为广泛,如,Eicemanetal.(2006)利用遗传算法(是ANN的一种)对混合小波系数进行分类识别。

目前,自组织特征映射(Self-organizingFeatureMaps,SOFM)神经网络在高光谱影像的模式识别方面,国内外还较少有研究与应用,而结合遥感波谱维光谱分析技术的应用研究就更少。

SOFM常用于遥感图像处理方面,如,Moshouetal.(2005)利用SOFM神经网络进行数据融合,使分类误差减小到1%;Doucetteetal.(2001)根据SOFM设计的SORM算法,从分类后的高分辨率影像中提取道路;Toivanenetal.(2003)利用SOFM神经网络从多光谱影像中提取边缘,并指出该方法可应用于大数据量影像边缘的提取;Moshouetal.(2006)根据5137个叶片的光谱数据,利用SOFM神经网络识别小麦早期黄锈病,准确率高达99%。

然而,SOFM不需要输入模式期望值(在某些分类问题中,样本的先验类别是很难获取的),其区别于BP(BackPropagation)等其他神经网络模型最重要的特点是能够自动寻找样本的内在规律和本质属性,这大大地拓宽了SOFM在模式识别和分类方面的应用。

基于以上几点,本章从光谱分析的角度对高光谱遥感影像进行分析识别和信息提取,给出了在不同光谱模型下,高光谱数据的不同分解,之后利用SOFM对具有较高光谱重叠度的这些分解进行分类识别,结合光谱分析对采样点进行类别辨识,并通过对小麦条锈病的病情严重度信息提取,提出了高光谱影像波谱维光谱分析的新途径。

简述国内外asr技术发展现状

1国外发展状况早在1928年防抱死制动理论就被提出.BOSCH公司在1936年第一个获得了防抱死制动系统的专利权.1954年,FORD公司将ABS装在林肯轿车上.这一时期的各种ABS的轮速传感器和制动压力调节装置都是机械式,因此,获取的轮速信号不够精确,制动压力调节的适时性和精确性也难以保证.随着电子技术的发展,ABS进进电子控制时代.20世纪60年代后期到70年代初期,凯尔塞·海伊斯公司研制生产的两轮制动的ABS、克莱斯勒公司与BENDIX公司合作研制的四轮制动的ABS、BOSCH和TEVES公司研制的ABS、WABCO公司与BENZ公司合作研制的装备在气压制动的载货汽车上的ABS,都是由模拟式电子控制装置对设置在制动管路中的电磁阀进行控制,直接对各制动轮以电子控制压力进行调节.由于模拟式电子控制装置反应速度慢、控制精度低、易受干扰,致使各种ABS均未达到预期的控制效果.20世纪70年代后期,ABS采用数字式电子技术,反应速度、控制精度和可靠性都显着进步,ABS进人实用化阶段.BOSCH公司在1978年首先推出了采用数字式电子控制装置的ABS--BOSCHABS2.自此,欧、美、日的很多公司相继研制了形式多样的ABS.自1985年起,BOSCH、TEVES、BENDIX、WABCO等公司开始对ABS的生产大力投资,以满足汽车对ABS需要量增加的要求.目前,国际上ABS在汽车上的应用越来越广泛,已成为尽大多数汽车的标准装备,北美和西欧的各类客车和轻型载货汽车,ABS的装备率已达90%以上,轿车ABS的装备率在60%左右,运送危险品的载货汽车ABS的装备率为100%.1971年BUICK公司研制了由电子控制装置自动中断发动机点火,以减小发动机输出转矩,防止驱动车轮发生滑转的驱动防抱死系统,成为ASR的雏形.1985年,VOLVO公司试制了电子牵引力控制系统ETC(ElectrONicTractionControl),通过调节燃油供给量来调节发动机输出转矩,以控制驱动轮滑转率,产生最佳驱动力.1986年,BOSCH推出了该公司的第一个牵引力控制系统TCS.仅依靠调节发动机输出转矩不能解决汽车在对开路面上很好地起步加速的题目.为了解决这一题目,需要对附着不好的一侧驱动轮施加部分制动,以充分发挥附着条件较好的一侧的地面驱动力.随着ABS技术的不断发展和成熟,利用ABS压力调节系统可实现这一目标.采用制动干预控制的ASR系统通常都是同ABS集成在一起的,形成ABS/ASR系统.1986年12月,BOSCH公司第一次将ABS与ASR结合起来,率先推出了具有防抱死制动和驱动防滑转功能的防滑控制系统ABS/ASR2U装置.同期,BENZ公司与WABCO公司也联合开发出了应用在载货汽车上的ABS/ASR系统.此后,各大汽车公司纷纷开始应用ABS/ASR系统,使其成为顶级豪华车的标准配置.随着各至公司不断开发出结构更紧凑、本钱更低、可靠性更强、功能更全面的ABS/ASR系统,ABS/ASR系统也逐渐应用于中、低档汽车上.到1997年时,已经有23家汽车厂商的近50种车型使用了ABS/ASR系统.2国内发展概况国内研究开发ABS起步较晚,约始于20世纪80年代中期.但我国对ABS的系统开发十分重视,制定相应的法规力促ABS的发展.1993年4月1日开始实施的GB13594-92《汽车防抱死制动系统性能要求和试验方法》,为ABS成为标准装备提供了试验方法和依据.1999年10月1日实施的GB12676--1999《汽车制动系统结构、性能和试验方法》规定:2003年10月1日以后,大型客车和大型载货汽车必须安装符合GB13594中规定的一类ABS.目前,国内研究ABS有代表性的科.研机构有以下几个:吉林大学汽车动态模拟国家重点实验室、北京理工大学汽车动力性与排放测试国家专业实验室、清华大学汽车安全与节、能国家重点实验室、华南理工交通学院汽车系、济南程军电子科技公司等.这些单位在ABS的仿真、控制量、轮速信号抗干扰处理、轮速信号异点剔除、防抱电磁阀动作响应等方面的研究取得了很多成果.同时对防抱死制动时、的滑移率的计算、滑移率和附着系数之间的关系及ABS的控制算法也有很深的研究.国内现在生产ABS的公司不少,但大多数公司是和国外着名ABS公司合作生产.完全自主生产开发ABS的有代表性的国内公司有:广州市科密汽车制动技术开发有限公司、重庆聚能汽车技术有限责任公司、东风科技汽车制动系统公司、西安博华机电股份有限公司等.已开发生产的产品有单通道、三通道、四通道、六通道的气压和液压式的,适用于摩托车、轿车、大中型客车一、重型载货汽车、挂车的ABS及相关零部件.这些ABS的制动性能指标达到了国外同类产品的水平,部分试验数据优于国外公司同类产品,在国内占有一定的市场.估计2005年我国新生产的中、重型载货汽车,大、中型客车ABS的装车率为100%,而小、微型客车ABS的装车率为20%,轿车ABS装车率为50%.国内对ASR的研究,大约开始于20世纪90年代.一些科研单位如清华大学、吉林产业大学、北京理工大学、同济大学、上海交通大学、济南重汽技术中心等对ASR技术的发展进行跟踪、研究,并取得了阶段性进展.目前,我国科研职员主要针对ASR控制系统的控制策略、控制算法、逻辑等关键环节进行研究.由于受电控发动机的限制,我国目前在ASR系统的控制理论方面大多侧重于采用以制动控制为主、发动机控制为辅的控制方法.总的来说,间隔产品化研究还有一定的差距.因此国内尚无自主研发的集ABS和ASR为一体的ABS/ASR防滑控制系统产品出现.3ABS/ASR的发展趋势ABS/ASR控制技术的进步目前,固然ABS/ASR已经广泛应用,但控制方法还是以逻辑门限值控制为主.该控制方法虽比较简单,但逻辑复杂,所有的门限值都需要大量的实验来确定,调试起来很困难.而且,采用逻辑门限值控制的ABS/ASR系统通用性比较差,需要针对不同的车型重新开发.随着各种现代控制理论不断发展和完善,采用优化控制理论,可实现伺服控制和高精度控制.将智能控制技术如模糊控制、神经网络控制技术应用到ABS/ASR系统中,可以进步系统的自适应性和可靠性.相对于目前的基于滑移率的控制算法,基于路面附着系数的控制算法轻易实现连续控制,能适应各种路面变化,控制滑移率在最佳滑移率四周,使ABS/ASR的控制效果得以改善.通过先进的测试手段可进一步完善ABS/ASR功能.例如,ABS控制车轮制动防滑时,车速没有直接丈量,而是通过轮速的波动情况估取参考车速作为车速,然后计算滑移率用以控制,所以,ABS控制时的滑移率不能保证其正确性.随着传感器制造和集成技术的发展,添加车身速度传感器来丈量车身速度,可进步ABS/ASR的控制效果.线制动系统BBW(Brake-by-Wire)是制动控制系统的发展方向之一.BBW将传统制动系统中的液压油或空气等传力介质完全由电制动取代,电能作为能量来源.制动时由电动机驱动制动钳块,整个系统内没有液、气压管路,可省略很多管路和传感器,因而结构简捷.BBW由电线传递能量,数据线传递信号,制动反应时间缩短,极大地进步了汽车的制动安全性,并为将来的智能汽车控制提供条件.此外,在电子控制系统中设计相应程序,操纵电控元件来控制制动力的大小及各轴制动力分配,可完全实现ABS及ASR等功能.BBW是一种全新的制动理念,但仍有一些题目需要解决:目前车辆的12V/24V电源系统无法提供如此大的能量,需采用高品质的42V电源;由于不存在独立的主动备用制动系统,因此需要一个备用系统保证制动安全;车辆在运行过程中会有各种干扰信号,如何消除这些干扰信号造成的影响是急需解决的题目.电子制动系统EBS(ElectronicallyControlledBrakingSystem)是适应对汽车及挂车制动系统稳定性逐步进步的要求,在ABS/ASR基础上发展起来的一套综合电子控制系统.它除了包含ABS/ASR的基本功能外,还具有以下特点:①EBS优化了各车轮间、主车与挂车或半挂车间的制动力分配.通常,对于常规制动系统而言,牵引车和挂车之间的制动协调性不能总是处于理想的匹配状态,尤其在与牵引车相配的挂车经常更换的情况下.EBS会在任何状态下监控到主车与挂车的不兼容性,自动调整主车与挂车之间的制动力分配,满足主车和挂车制动协调性的要求,改善车辆的安全性.前后桥衬片磨损协调,总磨损量达到最小,所有衬片更换间隔一致,缩短了维修时间,降低运行本钱.同时,制动力的协调还可以增加制动舒适性.②EBS通过制动治理系统将辅助制动和行车制动同一治理.它确保在每一次制动时,实现无磨损制动(缓速器、发动机制动承担大部分的制动工作,因此可以使行车制动器的温度保持在一个最低的水平,制动衬片的磨损降低).③改善了ABS/ASR的功能,改善了制动响应时间和车辆的

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您提供一个基本的神经网络控制系统设计方案,您可以根据自己的需求进行修改与完善。以下是基本的流程: 1. 系统建模:根据您所自拟的二阶系统,首先需要对其进行数学建模,得到其状态空间方程或传递函数。 2. 神经网络设计:将神经网络作为控制器,设计其结构和参数。根据系统的状态空间方程或传递函数,采用反向传播算法训练神经网络,以实现对系统的控制。 3. 控制系统仿真:将神经网络控制器与所建模的二阶系统进行仿真,观察系统的响应情况,调整控制器参数,直至达到满意的控制效果。 以下是一个简单的Python代码示例,用于实现神经网络控制器的设计和仿真: ```python import numpy as np import matplotlib.pyplot as plt import tensorflow as tf # 定义神经网络结构和参数 input_size = 1 hidden_size = 10 output_size = 1 learning_rate = 0.01 X = tf.placeholder(tf.float32, shape=[None, input_size]) Y = tf.placeholder(tf.float32, shape=[None, output_size]) weights1 = tf.Variable(tf.random_normal([input_size, hidden_size])) biases1 = tf.Variable(tf.zeros([hidden_size])) weights2 = tf.Variable(tf.random_normal([hidden_size, output_size])) biases2 = tf.Variable(tf.zeros([output_size])) # 定义神经网络的前向传播过程 hidden_layer = tf.nn.sigmoid(tf.matmul(X, weights1) + biases1) Y_pred = tf.matmul(hidden_layer, weights2) + biases2 # 定义损失函数和优化器 loss = tf.reduce_mean(tf.square(Y - Y_pred)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) # 生成仿真数据 t = np.linspace(0, 10, 1000) plant_output = np.sin(t) + np.random.randn(1000) * 0.1 plant_input = np.zeros_like(plant_output) plant_input[:-1] = plant_output[1:] # 训练神经网络控制器 sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(1000): _, loss_val = sess.run([optimizer, loss], feed_dict={X: plant_input.reshape(-1, 1), Y: plant_output.reshape(-1, 1)}) if i % 100 == 0: print("Step:", i, "Loss:", loss_val) # 使用神经网络控制器进行仿真 control_output = np.zeros_like(plant_output) control_output[0] = plant_output[0] for i in range(1, len(control_output)): control_input = sess.run(Y_pred, feed_dict={X: control_output[i-1].reshape(1, -1)}) control_output[i] = control_input # 绘制仿真结果 plt.figure() plt.plot(t, plant_output, label="Plant Output") plt.plot(t, control_output, label="Control Output") plt.legend() plt.show() ``` 上述代码中,我们定义了一个包含一个隐藏层和一个输出层的神经网络,使用反向传播算法训练神经网络控制器,然后使用训练好的控制器进行仿真。仿真结果可以通过绘制仿真信号的图像进行观察。 希望这个简单的方案可以帮助到您。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值