MATLAB做的BP神经网络,这个图是什么图
谷歌人工智能写作项目:神经网络伪原创
神经网络部分代码,这是什么意思?
仿真,实际上就是把一个非线性系统,用神经网络抽象出来好文案。这个非线性系统,不方便用数学形式表达出来,或者说不容易确定其精确的数学形式,这个时候我们就不管它的内部了,将其当做一个黑箱,只考虑输入输出。
将一定数量的输入输出样本用作网络的训练,只要通过训练后,得到的神经网络能正确反映输入输出的非线性映射关系,就说明这个神经网络在一定程度上体现了这个非线性系统的内部规律,并具有一定泛化能力,可以用其他的样本进行检验,并达到一定精度。
如果你的仿真指的是计算机上跑的程序,则一般是用MATLAB,实际上就是一段代码在那里运行旦伐测和爻古诧汰超咯、进行数学计算。
求教pytorch,深度神经网络中这段代码的隐藏层是那段代码?
这个线性回归程序没有隐藏层是一个单层神经网络,隐藏层是在多层感知机中引入的,并且一般要在隐藏层中使用ReLU函数作为激活函数,否则,虽然引入隐藏层,仍然等价于一个单层神经网络.下面是一种激活函数ReLU(见图),它只保留正数元素,负数元素清零.。
matlab中用RBF神经网络做预测的代码怎么写
clc;clearall;closeall;%%----BuildatrainingsetofasimilarversionofXORc_1=[00];c_2=[11];c_3=[01];c_4=[10];n_L1=20;%numberoflabel1n_L2=20;%numberoflabel2A=zeros(n_L1*2,3);A(:,3)=1;B=zeros(n_L2*2,3);B(:,3)=0;%createrandompointsfori=1:n_L1A(i,1:2)=c_1+rand(1,2)/2;A(i+n_L1,1:2)=c_2+rand(1,2)/2;endfori=1:n_L2B(i,1:2)=c_3+rand(1,2)/2;B(i+n_L2,1:2)=c_4+rand(1,2)/2;end%showpointsscatter(A(:,1),A(:,2),[],'r');holdonscatter(B(:,1),B(:,2),[],'g');X=[A;B];data=X(:,1:2);label=X(:,3);%%Usingkmeanstofindcintervectorn_center_vec=10;rng(1);[idx,C]=kmeans(data,n_center_vec);holdonscatter(C(:,1),C(:,2),'b','LineWidth',2);%%Calulatesigman_data=size(X,1);%calculateKK=zeros(n_center_vec,1);fori=1:n_center_vecK(i)=numel(find(idx==i));end%UsingknnsearchtofindKnearestneighborpointsforeachcentervector%thencalucatesigmasigma=zeros(n_center_vec,1);fori=1:n_center_vec[n,d]=knnsearch(data,C(i,:),'k',K(i));L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);L2=sum(L2(:));sigma(i)=sqrt(1/K(i)*L2);end%%Calutateweights%kernelmatrixk_mat=zeros(n_data,n_center_vec);fori=1:n_center_vecr=bsxfun(@minus,data,C(i,:)).^2;r=sum(r,2);k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));endW=pinv(k_mat'*k_mat)*k_mat'*label;y=k_mat*W;%y(y>=0.5)=1;%y(y。
求预测一组数据的bp神经网络模型的matlab代码
用matlab求预测一组数据的bp神经网络模型,可以分1、给定已经数据,作为一个原始序列;2、设定自回归阶数,一般2~3,太高不一定好;3、设定预测某一时间段4、设定预测步数5、用BP自定义函数进行预测6、根据预测值,用plot函数绘制预测数据走势图其主要实现代码如下:clc% x为原始序列(行向量)x=[208.72 205.69 231.5 242.78 235.64 218.41];%x=[101.4 101.4 101.9 102.4 101.9 102.9];%x=[140 137 112 125 213 437.43];t=1:length(x);% 自回归阶数lag=3; %预测某一时间段t1=t(end)+1:t(end)+5;%预测步数为fnfn=length(t1); [f_out,iinput]=BP(x,lag,fn);P=vpa(f_out,5);A=[t1' P'];disp('预测值')disp(A)% 画出预测图figure(1),plot(t,iinput,'bo-'),hold onplot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid ontitle('BP神经网络预测某地铁线路客流量')xlabel('月号'),ylabel('客流量(百万)');运行结果:
如何用70行java代码实现深度神经网络算法
神经网络结构如下图所示,最左边的是输入层,最右边的是输出层,中间是多个隐含层,对于隐含层和输出层的每个神经节点,都是由上一层节点乘以其权重累加得到,标上“+1”的圆圈为截距项b,对输入层外每个节点:Y=w0*x0+w1*x1+...+wn*xn+b,由此我们可以知道神经网络相当于一个多层逻辑回归的结构。
import .Random;public class BpDeep{ public double[][] layer;//神经网络各层节点 public double[][] layerErr;//神经网络各节点误差 public double[][][] layer_weight;//各层节点权重 public double[][][] layer_weight_delta;//各层节点权重动量 public double mobp;//动量系数 public double rate;//学习系数 public BpDeep(int[] layernum, double rate, double mobp){ = mobp; = rate; layer = new double[layernum.length][]; layerErr = new double[layernum.length][]; layer_weight = new double[layernum.length][][]; layer_weight_delta = new double[layernum.length][][]; Random random = new Random(); for(int l=0;l。
求画RBF神经网络核函数(即高斯核函数,多二次核函数,逆多二次核函数)图像的MATLAB代码 20
径向基函数是单变量的函数,直接用plot命令即可。画出来的图像应该是个尖顶的对称函数曲线。plot(x,y):若y和x为同维向量,则以x为横坐标,y为纵坐标绘制连线图。
若x是向量,y是行数或列数与x长度相等的矩阵,则绘制多条不同色彩的连线图,x被作为这些曲线的共同横坐标。若x和y为同型矩阵,则以x,y对应元素分别绘制曲线,曲线条数等于矩阵列数。
例子:在0≤x≤2π区间内,绘制曲线y=2e-0.5xcos(4πx)程序如下:x=0:pi/100:2*pi;y=2*exp(-0.5*x).*cos(4*pi*x);plot(x,y)。