如何画出神经网络的结构图
谷歌人工智能写作项目:神经网络伪原创
试画出BP神经网络结构输入层3节点,隐层5节点,输出层2节点
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一写作猫。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。用WORD可以画,插入形状。
什么是全连接神经网络?怎么理解“全连接”?
1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。
2、全连接的神经网络示意图:3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。
神经网络1、一般的SGD的模型只有一层WX+b,现在需要使用一个RELU作为中间的隐藏层,连接两个WX+b,仍然只需要修改Graph计算单元为:而为了在数学上满足矩阵运算,我们需要这样的矩阵运算:这里N取1024,即1024个隐藏结点。
2、于是四个参数被修改:其中,预测值计算方法改为:3、计算3000次,可以发现准确率一开始提高得很快,后面提高速度变缓,最终测试准确率提高到88.8%。