深度学习之损失函数与激活函数的选择
深度学习之损失函数与激活函数的选择在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。其中使用的损失函数是均方差,而激活函数是Sigmoid。
实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?以下是本文的内容。MSE损失+Sigmoid激活函数的问题先来看看均方差+Sigmoid的组合有什么问题。
回顾下Sigmoid激活函数的表达式为:函数图像如下:从图上可以看出,对于Sigmoid,当z的取值越来越大后,函数曲线变得越来越平缓,意味着此时的导数σ′(z)也越来越小。
同样的,当z的取值越来越小时,也有这个问题。仅仅在z取值为0附近时,导数σ′(z)的取值较大。在均方差+Sigmoid的反向传播算法中,每一层向前递推都要乘以σ′(z),得到梯度变化值。
Sigmoid的这个曲线意味着在大多数时候,我们的梯度变化值很小,导致我们的W,b更新到极值的速度较慢,也就是我们的算法收敛速度较慢。那么有什么什么办法可以改进呢?
交叉熵损失+Sigmoid改进收敛速度Sigmoid的函数特性导致反向传播算法收敛速度慢的问题,那么如何改进呢?换掉Sigmoid?这当然是一种选择。
另一种常见的选择是用交叉熵损失函数来代替均方差损失函数。每个样本的交叉熵损失函数的形式:其中,?为向量内积。
这个形式其实很熟悉,在逻辑回归原理小结中其实我们就用到了类似的形式,只是当时我们是用最大似然估计推导出来的,而这个损失函数的学名叫交叉熵。
使用了交叉熵损失函数,就能解决Sigmoid函数导数变化大多数时候反向传播算法慢的问题吗?我们来看看当使用交叉熵时,我们输出层δL的梯度情况。
对比一下均方差损失函数时在δL梯度使用交叉熵,得到的的δl梯度表达式没有了σ′(z),梯度为预测值和真实值的差距,这样求得的Wl,bl的梯度也不包含σ′(z),因此避免了反向传播收敛速度慢的问题。
通常情况下,如果我们使用了sigmoid激活函数,交叉熵损失函数肯定比均方差损失函数好用。
对数似然损失+softmax进行分类输出在前面我们都假设输出是连续可导的值,但是如果是分类问题,那么输出是一个个的类别,那我们怎么用DNN来解决这个问题呢?
DNN分类模型要求是输出层神经元输出的值在0到1之间,同时所有输出值之和为1。很明显,现有的普通DNN是无法满足这个要求的。但是我们只需要对现有的全连接DNN稍作改良,即可用于解决分类问题。
在现有的DNN模型中,我们可以将输出层第i个神经元的激活函数定义为如下形式:这个方法很简洁漂亮,仅仅只需要将输出层的激活函数从Sigmoid之类的函数转变为上式的激活函数即可。
上式这个激活函数就是我们的softmax激活函数。它在分类问题中有广泛的应用。将DNN用于分类问题,在输出层用softmax激活函数也是最常见的了。
对于用于分类的softmax激活函数,对应的损失函数一般都是用对数似然函数,即:其中yk的取值为0或者1,如果某一训练样本的输出为第i类。则yi=1,其余的j≠i都有yj=0。
由于每个样本只属于一个类别,所以这个对数似然函数可以简化为:可见损失函数只和真实类别对应的输出有关,这样假设真实类别是第i类,则其他不属于第i类序号对应的神经元的梯度导数直接为0。
对于真实类别第i类,它的WiL对应的梯度计算为:可见,梯度计算也很简洁,也没有第一节说的训练速度慢的问题。
当softmax输出层的反向传播计算完以后,后面的普通DNN层的反向传播计算和之前讲的普通DNN没有区别。梯度爆炸or消失与ReLU学习DNN,大家一定听说过梯度爆炸和梯度消失两个词。
尤其是梯度消失,是限制DNN与深度学习的一个关键障碍,目前也没有完全攻克。什么是梯度爆炸和梯度消失呢?
简单理解,就是在反向传播的算法过程中,由于我们使用了是矩阵求导的链式法则,有一大串连乘,如果连乘的数字在每层都是小于1的&#x