用于神经网络计算的计算机需要怎样的配置
不是单机器配置的问题,主要看你的数据量和你打算干什么了,数据量不大并且要求实时性不高的话普通台式机就行。但是如果要求实时性强,什么CPU都有压力,应当使用GPU进行加速。
如果是数据量超大,可以考虑使用集群进行分布式运算。
神经网络计算机有哪些特点?
传统的计算机在进行繁琐、复杂的数值运算时,例如,计算圆周率π,就显得十分有能耐,比人高强;然而,面对人类认为比较容易的有关识别、判断方面的问题时,就显得笨手笨脚,力不从心rbsci。
为了解决这个问题,科学家们一心想发明神经计算机,或叫神经元网络计算机。神经网络计算机的工作原理类似人脑。人脑由100亿~150亿个神经元组成,而每个神经元又和数千到数万个神经元相连接。
神经网络计算机正是利用与人脑非常相似的神经网络进行信息处理的。神经网络计算机有着许多特点:第一,有着极强的自学能力。人们利用神经网络计算机的自学特点,可以方便地“教”会它认读自然语言文字。
第二,神经元网络计算机的“智能”好像是自发产生的,不是严格设计出来的,这是各个神经元所做的简单事情集合起来的结果。这一点同人的大脑的工作原理极相似。
第三,神经元网络计算机的资料不是贮存在存储器中,而是贮存在神经元之间的网络中。这就是说,即使个别神经网络断裂、破坏,也并不影响整体的运算能力,即它具有重建资料的能力。
现在,人工神经网络技术的研究,已在许多部门获得了实际应用。例如,信息识别、系统控制、检测与监测智能化等。可以预计,在21世纪,人工神经网络的研究将会有新的突破。
虽然用无生命的元器件实现人脑的所有功能是不可能的,但在某些特定的智能方面,接近或达到人脑水平的神经网络计算机将会十分普遍,届时,神经网络计算机将渗透到人类生活的各个领域。
神经计算机是按照一种仿效人脑的神经网络模型工作的。由于这种模型能通过电路予以实现,因此人们不仅可以通过这一模型了解人的神经细胞是怎样工作的,而且还能把它制成集成电路的芯片,使计算机仿效神经系统工作。
于是,便出现了利用神经网络工作原理的神经计算机。神经计算机不仅能够进行并行处理,而且还具有以下两种能力:第一,具有联想能力,例如见到红的、圆的、有芬香味的东西,便会联想起这是苹果。
第二,具有自我组织能力,神经计算机通过多次处理同类问题,能够把各神经元连接成最适于处理该问题的网络,通过做同类工作而有所改进便是具有学习功能。
最能发挥神经计算机长处的工作有图像识别、声音识别、运动控制等。由于神经计算机采用并行处理方式,很适合用光计算机来实现。今后,光计算机得到实用时,光神经计算机将会有更诱人的前景。
什么是神经网络计算机
这个其实你安静下来查查百度也挺快的,人讲的话漏洞还是蛮多的。神经网络可以想象成机器人脑。
尽量简单讲吧,神经网络的初衷是人希望计算机能模拟人的思维方式解决这些问题:识别物体,识别数据类型——》进而做到预测物体发展,预测数据变化。比如预测股票,电影票房等等。那人的思维方式是怎样的呢?
是多维的网状的。比如,识别一个杯子只需要一瞬间,但你判断的过程是通过杯子的各种特征综合反映出来是一个杯子的。这种各种特征的综合反映就是神经网络的基本特点。
抽象一点,你输入一组能代表杯子的特征,经过神经网络的处理,它能告诉你这是一个杯子。神经网络就算成了。
其中,你输入的一组特征就是输入向量;神经网络是由你自己设计的,包括层数和节点数,都是模拟人脑复杂程度的。解决什么样的问题,就用适当的复杂程度。处理指的是各种函数。最后能告诉你是个杯子,就算是输出了。
当然,神经网络并不是很准确的网络,因为这是和人自己对大脑的研究成正比的。但因为兼容性强,建模方便的特征,使神经网络的使用范围还是相当广的。希望没有误导你。
什么是神经网络计算机?
许多新型电子计算机不仅拥有高速的计算功能,而且还能模拟人脑的某种思维活动,就是说,拥有某些智能化的功能。然后,如果严格来鉴定一下,它们离真正的人脑思维功能实在差得太远了,而且有许多本质的差异。
主要表现在人脑拥有高度的自我学习和联想、创造的能力,以及更高级的寻找最优方案和各种理性的、情感的功能。
神经网络计算机就是通过人工神经网络,模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的计算机。它可以判断对象的性质与状态,并能采取相应的行动,而且可同时并