伤寒、副伤寒流行预测模型(BP神经网络)的建立
由于目前研究的各种数学模型或多或少存在使用条件的局限性,或使用方法的复杂性等问题,预测效果均不十分理想,距离实际应用仍有较大差距。
NNT是Matlab中较为重要的一个工具箱,在实际应用中,BP网络用的最广泛。
神经网络具有综合能力强,对数据的要求不高,适时学习等突出优点,其操作简便,节省时间,网络初学者即使不了解其算法的本质,也可以直接应用功能丰富的函数来实现自己的目的。
因此,易于被基层单位预防工作者掌握和应用。
以下几个问题是建立理想的因素与疾病之间的神经网络模型的关键:(1)资料选取应尽可能地选取所研究地区系统连续的因素与疾病资料,最好包括有疾病高发年和疾病低发年的数据。
在收集影响因素时,要抓住主要影响伤寒、副伤寒的发病因素。
(2)疾病发病率分级神经网络预测法是按发病率高低来进行预测,在定义发病率等级时,要结合专业知识及当地情况而定,并根据网络学习训练效果而适时调整,以使网络学习训练达到最佳效果。
(3)资料处理问题在实践中发现,资料的特征往往很大程度地影响网络学习和训练的稳定性,因此,数据的应用、纳入、排出问题有待于进一步研究。
6.3.1人工神经网络的基本原理人工神经网络(ANN)是近年来发展起来的十分热门的交叉学科,它涉及生物、电子、计算机、数学和物理等学科,有着广泛的应用领域。
人工神经网络是一种自适应的高度非线性动力系统,在网络计算的基础上,经过多次重复组合,能够完成多维空间的映射任务。
神经网络通过内部连接的自组织结构,具有对数据的高度自适应能力,由计算机直接从实例中学习获取知识,探求解决问题的方法,自动建立起复杂系统的控制规律及其认知模型。
人工神经网络就其结构而言,一般包括输入层、隐含层和输出层,不同的神经网络可以有不同的隐含层数,但他们都只有一层输入和一层输出。
神经网络的各层又由不同数目的神经元组成,各层神经元数目随解决问题的不同而有不同的神经元个数。
6.3.2BP神经网络模型BP网络是在1985年由PDP小组提出的反向传播算法的基础上发展起来的,是一种多层次反馈型网络(图6.17),它在输入和输出之间采用多层映射方式,网络按层排列,只有相邻层的节点直接相互连接,传递之间信息。
在正向传播中,输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态。
如果输出层不能得到期望的输出结果,则转入反向传播,将误差信号沿原来的连同通路返回,通过修改各层神经元的权值,使误差信号最小。
BP网络的学习算法步骤如下(图6.18):图6.17BP神经网络示意图图6.18BP算法流程图第一步:设置初始参数ω和θ,(ω为初始权重,θ为临界值,均随机设为较小的数)。
第二步:将已知的样本加到网络上,利用下式可算出他们的输出值yi,其值为岩溶地区地下水与环境的特殊性研究式中:xi为该节点的输入;ωij为从I到j的联接权;θj为临界值;yj为实际算出的输出数据。
第三步:将已知输出数据与上面算出的输出数据之差(dj-yj)调整权系数ω,调整量为ΔWij=ηδjxj式中:η为比例系数;xj为在隐节点为网络输入,在输出点则为下层(隐)节点的输出(j=1,2…,n);dj为已知的输出数据(学习样本训练数据);δj为一个与输出偏差相关的值,对于输出节点来说有δj=ηj(1-yj)(dj-yj)对于隐节点来说,由于它的输出无法进行比较,所以经过反向逐层计算有岩溶地区地下水与环境的特殊性研究其中k指要把上层(输出层)节点取遍。
误差δj是从输出层反向逐层计算的。各神经元的权值调整后为ωij(t)=ωij(t-1)+Vωij式中:t为学习次数。
这个算法是一个迭代过程,每一轮将各W值调整一遍,这样一直迭代下去,知道输出误差小于某一允许值为止,这样一个好的网络就训练成功了,BP算法从本质上讲是把一组样本的输入输出问题变为一个非线性优化问题,它使用了优化技术中最普遍的一种梯度下降算法,用迭代运算求解权值相当于学习记忆问题。
6.3.3BP神经网络模型在伤寒、副伤寒流行与传播预测中的应用伤寒、副伤寒的传播与流行同环境之间有着一定的联系。
根据桂林市1990年以来乡镇为单位的伤寒、副伤寒疫情资料,伤寒、副伤寒疫源地资料,结合现有资源与环境背景资料(桂林市行政区划、土壤、气候等)和社会经济资料(经济、人口、生活习惯等统计资料)建立人工神经网络数学模型,来逼近这种规律。
6.3.3.1模型建立(1)神经网络的BP算法BP网络是一种前馈型网络,由1个输入层、若干隐含层和1个输出层构成。
如果输入层、隐含层和输出层的单元个数分别为n,q1,q2,m,则该三层网络网络可表示为BP(n,q1,q2,m),利用该网络可实现n维输入向量Xn=(X1,X2,…,Xn)T到m维输出向量Ym=(Y1,Y2,…,Ym)T的非线性映射。
输入层和输出层的单元数n,m根据具体问题确定。
(2)样本的选取将模型的输入变量设计为平均温度、平均降雨量、岩石性质、岩溶发育、地下水类型、饮用水类型、正规自来水供应比例、集中供水比例8个输入因子(表6.29),输出单元为伤寒副伤寒的发病率等级,共一个输出单元。
其中q1,q2的值根据训练结果进行选择。表6.29桂林市伤寒副伤寒影响因素量化表通过分析,选取在伤寒副伤寒有代表性的县镇在1994~2001年的环境参评因子作为样本进行训练。
利用聚类分析法对疫情进行聚类分级(Ⅰ、Ⅱ、Ⅲ、Ⅳ),伤寒副伤寒发病最高级为Ⅳ(BP网络中输出定为4),次之的为Ⅲ(BP网络中输出定为3),以此类推,最低为Ⅰ(BP网络中输出定为1)(3)数据的归一化处理为使网络在训练过程中易于收敛,我们对输入数据进行了归一化处理,并将输入的原始数据都化为0~1之间的数。
如将平均降雨量的数据乘以0.0001;将平均气温的数据乘以0.01;其他输入数据也按类似的方法进行归一化处理。
(4)模型的算法过程假设共有P个训练样本,输入的第p个(p=1,2,…,P)训练样本信息首先向前传播到隐含单元上。
经过激活函数f(u)的作用得到隐含层1的输出信息:岩溶地区地下水与环境的特殊性研究经过激活函数f(u)的作用得到隐含层2的输出信息:岩溶地区地下水与环境的特殊性研究激活函数f(u)我们这里采用Sigmoid型,即f(u)=1/[1+exp(-u)](6.5)隐含层的输出信息传到输出层,可得到最终输出结果为岩溶地区地下水与环境的特殊性研究以上过程为网络学习的信息正向传播过程。
另一个过程为误差反向传播过程。
如果网络输出与期望输出间存在误差,则将误差反向传播,利用下式来调节网络权重和阈值:岩溶地区地下水与环境的特殊性研究式中:Δω(t)为t次训练时权重和阈值的修正;η称为学习速率,0<η<1;E为误差平方和。
岩溶地区地下水与环境的特殊性研究反复运用以上两个过程,直至网络输出与期望输出间的误差满足一定的要求。该模型算法的缺点:1)需要较长的训练时间。
由于一些复杂的问题,BP算法可能要进行几小时甚至更长的时间的训练,这主要是由于学习速率太小造成的&#x