自回归
文章平均质量分 90
AI生成未来
这个作者很懒,什么都没留下…
展开
-
首次超越扩散模型和非自回归Transformer模型!字节开源RAR:自回归生成最新SOTA!
解决的问题RAR(随机自回归建模)旨在提升图像生成任务的表现,同时保持与语言建模框架的完全兼容性。提出的方案RAR采用了一种简单的方法,通过标准的自回归训练过程并结合下一个 token 预测目标,将输入序列随机打乱到不同的分解顺序。在训练过程中,使用概率 r 将输入序列的排列顺序随机化,其中 r 从 1 开始并逐渐线性衰减至 0,以让模型学习所有分解顺序的期望似然值。应用的技术。原创 2024-11-11 00:33:01 · 710 阅读 · 0 评论 -
自回归视觉生成里程碑!比ControlNet 和 T2I-Adapter 快五倍!北大&腾讯提出CAR:灵活、高效且即插即用的可控框架
当前的视觉生成模型主要有两种技术路径:扩散模型和自回归模型。扩散模型在生成控制上表现出色,但自回归模型虽然具备强大的生成能力和可扩展性,控制性和灵活性方面仍然未被充分探索。原创 2024-10-13 14:40:18 · 717 阅读 · 0 评论
分享