122、TensorFlow多设备运行

# 如果你想使你的程序运行在不同的设备上
# tf.device函数提供了一个方便的方法来实现
# 所有在特定上下文中的操作都放置在相同的设备上面
# A device specification has the following form:
#              /job:<JOB_NAME>/task:<TASK_INDEX>/device:<DEVICE_TYPE>:<DEVICE_INDEX>
# <JOB_NAME> 是一个字母数字字符串,并且不以数字开头
# <DEVICE_TYPE> GPU or CPU
# <TASK_INDEX>是一个非负值,表示在一个job中的第几个task
# <DEVICE_INDEX> 表示第几个设备
# operation created outside either context will run on the "best possible" device
# For example , if you have a GPU and a CPU avaiable , and the operation
# has a GPU implementation , TensorFlow will choose the GPU
import tensorflow as tf
weights = tf.random_normal([2, 2, 3])
with tf.device("/device:CPU:0"):
    # operations created in this context will be pinned to the CPU
    img = tf.cast(tf.image.decode_jpeg(tf.read_file("img.jpg")), dtype=tf.float32)

with tf.device("/device:GPU:0"):
    # Operations created in this context will be pinned to the GPU
    result = tf.matmul(weights, img)
    

 

转载于:https://www.cnblogs.com/weizhen/p/8451485.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值