一般商家在做活动的时候,经常会遇到各种不怀好意的DDOS攻击(利用无辜的吃瓜群众夺取资源),导致真正的我们无法获得服务!所以说高防IP还是很有必要的。
搞活动就意味着人多,接入SLB,对多台云服务器进行流量分发,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。
基于SLB价格以及灵活性考虑后面我们接入Nginx做限流分发,来保障后端服务的正常运行。
后端秒杀业务逻辑,基于Redis 或者 Zookeeper 分布式锁,Kafka 或者 Redis 做消息队列,DRDS数据库中间件实现数据的读写分离。
优化思路
分流、分流、分流,重要的事情说三遍,再牛逼的机器也抵挡不住高级别的并发。
限流、限流、限流,毕竟秒杀商品有限,防刷的前提下没有绝对的公平,根据每个服务的负载能力,设定流量极限。
缓存、缓存、缓存、尽量不要让大量请求穿透到DB层,活动开始前商品信息可以推送至分布式缓存。
异步、异步、异步,分析并识别出可以异步处理的逻辑,比如日志,缩短系统响应时间。
主备、主备、主备,如果有条件做好主备容灾方案也是非常有必要的(参考某年锤子的活动被攻击)。
最后,为了支撑更高的并发,追求更好的性能,可以对服务器的部署模型进行优化,部分请求走正常的秒杀流程,部分请求直接返回秒杀失败,缺点是开发部署时需要维护两套逻辑。
分层优化
前端优化:活动开始前生成静态商品页面推送缓存和CDN,静态文件(JS/CSS)请求推送至文件服务器和CDN。
网络优化:如果是全国用户,最好是BGP多线机房,减少网络延迟。
应用服务优化:Nginx最佳配置、Tomcat连接池优化、数据库配置优化、数据库连接池优化。
全链路压测
分析需压测业务场景涉及系统
协调各个压测系统资源并搭建压测环境
压测数据隔离以及监控(响应时间、吞吐量、错误率等数据以图表形式实时显示)
压测结果统计(平均响应时间、平均吞吐量等数据以图表形式在测试结束后显示)
优化单个系统性能、关联流程以及整个业务流程
整个压测优化过程就是一个不断优化不断改进的过程,事先通过测试不断发现问题,优化系统,避免问题,指定应急方案,才能让系统的稳定性和性能都得到质的提升。
————————————————
分布式锁:
创建锁的策略:redis的普通key一般都允许覆盖,A用户set某个key后,B在set相同的key时同样能成功,如果是锁场景,那就无法知道到底是哪个用户set成功的;这里jedis的setnx方式为我们解决了这个问题,简单原理是:当A用户先set成功了,那B用户set的时候就返回失败,满足了某个时间点只允许一个用户拿到锁。
锁过期时间:某个抢购场景时候,如果没有过期的概念,当A用户生成了锁,但是后面的流程被阻塞了一直无法释放锁,那其他用户此时获取锁就会一直失败,无法完成抢购的活动;当然正常情况一般都不会阻塞,A用户流程会正常释放锁;过期时间只是为了更有保障。
如何删除锁
上面是创建锁,同样的具有有效时间,但是我们不能完全依赖这个有效时间,场景如:有效时间设置1分钟,本身用户A获取锁后,没遇到什么特殊情况正常生成了抢购订单后,此时其他用户应该能正常下单了才对,但是由于有个1分钟后锁才能自动释放,那其他用户在这1分钟无法正常下单(因为锁还是A用户的),因此我们需要A用户操作完后,主动去解锁: