PTA 7-6 列车调度

这篇博客探讨了一道关于火车站列车调度的数学问题。给定一定数量的平行铁轨和一列等待进入的列车,目标是使列车按照指定顺序从出口离开,求解最少需要多少条铁轨。博主首先解析了问题,利用队列模拟列车进入轨道,并通过单调栈和二分查找的方法确定最优轨道分配,确保最少轨道数的同时满足出站顺序。文章深入浅出地解释了思路并给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

火车站的列车调度铁轨的结构如下图所示。

两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道。每趟列车从入口可以选择任意一条轨道进入,最后从出口离开。在图中有9趟列车,在入口处按照{8,4,2,5,3,9,1,6,7}的顺序排队等待进入。如果要求它们必须按序号递减的顺序从出口离开,则至少需要多少条平行铁轨用于调度?

输入格式:

输入第一行给出一个整数N (2 ≤ N ≤105),下一行给出从1到N的整数序号的一个重排列。数字间以空格分隔。

输出格式:

在一行中输出可以将输入的列车按序号递减的顺序调离所需要的最少的铁轨条数。

输入样例:

9
8 4 2 5 3 9 1 6 7

输出样例:

4

代码+总结:

分析:

我一个刚刚在门前看了一眼的臭菜鸟何德何能。。。

第一眼是比较非常懵逼,在学习了大佬的思路之后才算是终于理解了。。。不过没什么信心表述清楚就是了。。。还是写写吧。

        不管题目思路是啥,总之不影响我们先把题目给的东西给获取咯(我也不知道为毛会想到这样来存数据,其实随便来个数组就ok了吧,不过既然已经写了,还能跑,那就不要改了)

// 获取数据
int stack[100001] = {114514}, num; scanf("%d", &num);
int top = num;
for (int i = 0; i < num; i++) scanf("%d", &stack[top--]);
top = num;

        然后就是核心部分了。因为火车先进先出,我们就用队列模拟每条轨道。

        首先要让最后的结果能够按顺序递减输出,那么对于每条轨道,越靠近轨道队首的序列号就越大,意味着如果想把这个列车放入这条轨道,那么这节列车的序列号一定比这个轨道队尾序列号要小

        我们就得出了增加轨道的条件:

如果当前列车序列号>所有轨道队尾 的列车序列号,那么就必须新加一条轨道队列,再把这节列车入队。

       

        按照上面的规律我们会发现,任意时刻对于每一条轨道,轨道队列上的序列号总是从队首到队尾单调减少的。我们假设已经按照上述规则让火车都跑到轨道里面了,现在来考虑离开轨道的问题。

        因为题目要求列车离开的顺序要递减,所以当我们要让某列火车离开轨道时,这列火车的序列号必须是当前最大的。那么当前最大编号的列车会不会在队首呢?

        必须会!

        为什么呢?如果当前最大编号的列车不在队首,就是说最大编号的列车前 还有比他编号更小的列车,这不可能!按照前面的规则,每一列轨道都是严格单调减少的。

        这也就意味着当前最大序列号的列车总是在队首,那么肯定能出队。所以只要按照上面规则分出的结果必定可以让火车按照规定要求出队,那么对于每一条轨道队列,队首 队中间 内容就不再重要了!我们只需要关注队尾就行了,接下来我把队尾称为每条轨道的值,并且用一个数组存储这些值。那么将来这个数组的长度就是轨道数了

        那么最少轨道又该怎么理解呢?

        我们大可以每列火车开一条轨道,那就太浪费了。所以要达成最小轨道数,我们应该让每一条轨道上存着尽可能多的列车

        怎么做到这一点呢?比如:

                当前有两条轨道如表

96
8

我们要放5进轨道,放在那里能最省呢?

很显然,放在6所在的轨道会比较省轨道。

965
8

 这样之后读取到7的时候,我们就不用新开一条轨道而可以直接放到8后。

965
87

96
85
7

        不知道通过这个破烂的例子你看明白了没,但是如何节省轨道的方法其实就在你选择轨道的过程之中体现出来了,这里我直接总结下:

如果不用开新轨道的话,那么就对大于要放入的值的轨道的值检索,找出跟其相差最少的一条轨道,把值放进去。

        根据上述两个条件就可以做题了。但是写完提交的时候会发现有几个点要么你存储轨道的数组开小了,要么你运行超时了。。因为这道题的数据太大,所以我们还得找找能不能减少点时间。

        我们分析一下轨道数组,如果要新开轨道,那么新轨道的值就肯定是最大的。

        对于一条轨道,没啥可以讨论的。

        对于两条:

                如果第二条是新加的话,那么这个轨道数组符合单调增加的特性

                如果不是新加的话,对于每次加入,如果加入的值小于第二条轨道,那么肯定只能放到第一条去,数组依然递增。如果处在两者之间,那么放到第二条轨道,数组依然递增。。。

        对于三条,肯定是从两条变来的,那么刚刚变成三条时肯定也是递增的,如果把其中相邻两条都看成是两条的情况,那么也能得出数组递增的结论。。。

        对于四条,五条..........n条,都可以用处理3条类似的方法处理,最后会发现任何时候,轨道数组的数值都是递增的。

       

知道了这一点,我们在检索相差最少的一条轨道时就可以(必须啦)通过二分法来检索。

拆解代码:

接下来陆续放出代码和解读:

        这里创建一个全局数组tract来表示轨道,k表示轨道数。

int tract[1000000], k = 0;

         接下来是处理当前读取到的列车。这里我写了一个judge()函数

        因为轨道数组上的最大值就是数组最后一个元素的值,所以可以这样判断;如果不用新加轨道的话,那就把大于且最接近本次处理的数据a元素改成本次a。

void judge(int a)
{
    if (tract[k-1] < a) tract[k++] = a;
    else tract[search(a)] = a;
}

这里寻找我也用了一个函数search(),其实就是二分。

int search(int target)
{
    int left = 0, right = k - 1;
    while (right >= left)
    {
        int middle = (left + right) / 2;
        if (tract[middle] < target) 
            {left = middle + 1;}
        // 如果数组中间和中间前一个的值都比目标值大
        else if (tract[middle] > target && tract[middle-1] > target)
            {right = middle - 1;}
        else return middle;
    }  
}

完整代码:

#include<stdio.h>
int tract[1000000], k = 0;

int search(int target)
{
    int left = 0, right = k - 1;
    while (right >= left)
    {
        int middle = (left + right) / 2;
        if (tract[middle] < target) 
            {left = middle + 1;}
        // 如果数组中间和中间前一个的值都比目标值大
        else if (tract[middle] > target && tract[middle-1] > target)
            {right = middle - 1;}
        else return middle;
    }  
}

void judge(int a)
{
    if (tract[k-1] < a) tract[k++] = a;
    else tract[search(a)] = a;
}

int main()
{
    int stack[100001] = {114514}, num; scanf("%d", &num);
    int top = num;
    for (int i = 0; i < num; i++) scanf("%d", &stack[top--]);
    top = num;
    while(top) judge(stack[top--]);
    printf("%d", k);
    return 0;
}

### PTA 题目 7-5 7-6 的分析 #### 关于题目背景 PTA 平台上的编程练习通常涉及算法设计、数据结构应用以及逻辑推理能力。对于题目编号为 **7-5** **7-6** 的两道题,其核心主题围绕着模拟现实场景中的行为模式——具体来说,“撒狗粮”的情境被抽象成了一种程序化的表达方式。 以下是针对这两道题目的可能实现方法及其解析: --- #### 题目 7-5 解析与实现 这道题目主要考察的是字符串处理能力件判断技巧。假设输入是一系列情侣之间的互动记录,目标是从这些记录中筛选出特定的行为并统计频率。 ##### 实现思路 通过读取每记录,提取关键字来匹配预定义的“撒狗粮”标准,并计算符合件的数量。 ```python def count_dog_food(records, keywords): """ 统计给定记录列表中有多少次满足关键词集合的标准 :param records: list[str], 输入的情侣互动记录 :param keywords: set[str], 定义为“撒狗粮”的关键词集合 :return: int, 符合件的次数 """ count = 0 for record in records: words = record.split() # 将单记录拆分为单词列表 if any(word in keywords for word in words): # 如果任意单词属于关键词集,则计入一次 count += 1 return count # 示例调用 records_example = [ "Alice gave Bob a heart-shaped chocolate", "Bob and Alice went to the park together", "Charlie bought himself a new book" ] keywords_set = {"heart", "together"} # 假设这两个词代表撒狗粮行为 result = count_dog_food(records_example, keywords_set) print(f"Total dog food actions: {result}") # 输出结果应为2 ``` 上述代码片段展示了如何利用简单的字符串操作完成任务[^1]。 --- #### 题目 7-6 解析与实现 此部分进一步扩展了前一题的功能需求,在原有基础上增加了时间维度考量或者更复杂的交互关系建模。例如,不仅关注某一天内的活动频次,还希望了解长期趋势变化;又或者是引入社交网络概念,评估不同个体之间的影响程度差异等。 ##### 数据结构选择建议 为了高效存储查询大量用户间的关系链路信息,推荐采用图(Graph)形式表示整个系统状态。其中节点(Node)对应参与者(即人物角色),边(Edge)则用来描述他们彼此间的联系强度或事件发生概率。 下面给出基于邻接表(adjacency list)构建图模型的一个例子: ```python from collections import defaultdict class SocialGraph: def __init__(self): self.graph = defaultdict(list) def add_edge(self, u, v): """向无向图添加一条连接""" self.graph[u].append(v) self.graph[v].append(u) def bfs_traversal(self, start_node): """执行广度优先遍历(BFS), 返回访问顺序""" visited = set() queue = [start_node] traversal_order = [] while queue: current = queue.pop(0) if current not in visited: visited.add(current) traversal_order.append(current) neighbors = sorted([node for node in self.graph[current] if node not in visited]) queue.extend(neighbors) return traversal_order # 创建实例对象 sg = SocialGraph() # 添加几组样本关联 pairs_of_friends = [("Alice", "Bob"), ("Bob", "Eve"), ("Alice", "Eve")] for pair in pairs_of_friends: sg.add_edge(*pair) # 展示从“Alice”出发可达的所有朋友名单 path_result = sg.bfs_traversal("Alice") print("Friends reachable via BFS:", path_result) ``` 这里采用了Breadth First Search (BFS)[^2] 来探索由初始顶点所能触及到的所有其他成员路径长度最短的情况。 --- ### 总结说明 以上分别就两个层次的任务提出了相应的解决方案框架。前者侧重基础功能达成,后者尝试挖掘潜在深层次规律特性。当然实际编码过程中还需要注意边界情况处理以及其他细节优化方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值