PTA 7-6 列车调度

这篇博客探讨了一道关于火车站列车调度的数学问题。给定一定数量的平行铁轨和一列等待进入的列车,目标是使列车按照指定顺序从出口离开,求解最少需要多少条铁轨。博主首先解析了问题,利用队列模拟列车进入轨道,并通过单调栈和二分查找的方法确定最优轨道分配,确保最少轨道数的同时满足出站顺序。文章深入浅出地解释了思路并给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

火车站的列车调度铁轨的结构如下图所示。

两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道。每趟列车从入口可以选择任意一条轨道进入,最后从出口离开。在图中有9趟列车,在入口处按照{8,4,2,5,3,9,1,6,7}的顺序排队等待进入。如果要求它们必须按序号递减的顺序从出口离开,则至少需要多少条平行铁轨用于调度?

输入格式:

输入第一行给出一个整数N (2 ≤ N ≤105),下一行给出从1到N的整数序号的一个重排列。数字间以空格分隔。

输出格式:

在一行中输出可以将输入的列车按序号递减的顺序调离所需要的最少的铁轨条数。

输入样例:

9
8 4 2 5 3 9 1 6 7

输出样例:

4

代码+总结:

分析:

我一个刚刚在门前看了一眼的臭菜鸟何德何能。。。

第一眼是比较非常懵逼,在学习了大佬的思路之后才算是终于理解了。。。不过没什么信心表述清楚就是了。。。还是写写吧。

        不管题目思路是啥,总之不影响我们先把题目给的东西给获取咯(我也不知道为毛会想到这样来存数据,其实随便来个数组就ok了吧,不过既然已经写了,还能跑,那就不要改了)

// 获取数据
int stack[100001] = {114514}, num; scanf("%d", &num);
int top = num;
for (int i = 0; i < num; i++) scanf("%d", &stack[top--]);
top = num;

        然后就是核心部分了。因为火车先进先出,我们就用队列模拟每条轨道。

        首先要让最后的结果能够按顺序递减输出,那么对于每条轨道,越靠近轨道队首的序列号就越大,意味着如果想把这个列车放入这条轨道,那么这节列车的序列号一定比这个轨道队尾序列号要小

        我们就得出了增加轨道的条件:

如果当前列车序列号>所有轨道队尾 的列车序列号,那么就必须新加一条轨道队列,再把这节列车入队。

       

        按照上面的规律我们会发现,任意时刻对于每一条轨道,轨道队列上的序列号总是从队首到队尾单调减少的。我们假设已经按照上述规则让火车都跑到轨道里面了,现在来考虑离开轨道的问题。

        因为题目要求列车离开的顺序要递减,所以当我们要让某列火车离开轨道时,这列火车的序列号必须是当前最大的。那么当前最大编号的列车会不会在队首呢?

        必须会!

        为什么呢?如果当前最大编号的列车不在队首,就是说最大编号的列车前 还有比他编号更小的列车,这不可能!按照前面的规则,每一列轨道都是严格单调减少的。

        这也就意味着当前最大序列号的列车总是在队首,那么肯定能出队。所以只要按照上面规则分出的结果必定可以让火车按照规定要求出队,那么对于每一条轨道队列,队首 队中间 内容就不再重要了!我们只需要关注队尾就行了,接下来我把队尾称为每条轨道的值,并且用一个数组存储这些值。那么将来这个数组的长度就是轨道数了

        那么最少轨道又该怎么理解呢?

        我们大可以每列火车开一条轨道,那就太浪费了。所以要达成最小轨道数,我们应该让每一条轨道上存着尽可能多的列车

        怎么做到这一点呢?比如:

                当前有两条轨道如表

96
8

我们要放5进轨道,放在那里能最省呢?

很显然,放在6所在的轨道会比较省轨道。

965
8

 这样之后读取到7的时候,我们就不用新开一条轨道而可以直接放到8后。

965
87

96
85
7

        不知道通过这个破烂的例子你看明白了没,但是如何节省轨道的方法其实就在你选择轨道的过程之中体现出来了,这里我直接总结下:

如果不用开新轨道的话,那么就对大于要放入的值的轨道的值检索,找出跟其相差最少的一条轨道,把值放进去。

        根据上述两个条件就可以做题了。但是写完提交的时候会发现有几个点要么你存储轨道的数组开小了,要么你运行超时了。。因为这道题的数据太大,所以我们还得找找能不能减少点时间。

        我们分析一下轨道数组,如果要新开轨道,那么新轨道的值就肯定是最大的。

        对于一条轨道,没啥可以讨论的。

        对于两条:

                如果第二条是新加的话,那么这个轨道数组符合单调增加的特性

                如果不是新加的话,对于每次加入,如果加入的值小于第二条轨道,那么肯定只能放到第一条去,数组依然递增。如果处在两者之间,那么放到第二条轨道,数组依然递增。。。

        对于三条,肯定是从两条变来的,那么刚刚变成三条时肯定也是递增的,如果把其中相邻两条都看成是两条的情况,那么也能得出数组递增的结论。。。

        对于四条,五条..........n条,都可以用处理3条类似的方法处理,最后会发现任何时候,轨道数组的数值都是递增的。

       

知道了这一点,我们在检索相差最少的一条轨道时就可以(必须啦)通过二分法来检索。

拆解代码:

接下来陆续放出代码和解读:

        这里创建一个全局数组tract来表示轨道,k表示轨道数。

int tract[1000000], k = 0;

         接下来是处理当前读取到的列车。这里我写了一个judge()函数

        因为轨道数组上的最大值就是数组最后一个元素的值,所以可以这样判断;如果不用新加轨道的话,那就把大于且最接近本次处理的数据a元素改成本次a。

void judge(int a)
{
    if (tract[k-1] < a) tract[k++] = a;
    else tract[search(a)] = a;
}

这里寻找我也用了一个函数search(),其实就是二分。

int search(int target)
{
    int left = 0, right = k - 1;
    while (right >= left)
    {
        int middle = (left + right) / 2;
        if (tract[middle] < target) 
            {left = middle + 1;}
        // 如果数组中间和中间前一个的值都比目标值大
        else if (tract[middle] > target && tract[middle-1] > target)
            {right = middle - 1;}
        else return middle;
    }  
}

完整代码:

#include<stdio.h>
int tract[1000000], k = 0;

int search(int target)
{
    int left = 0, right = k - 1;
    while (right >= left)
    {
        int middle = (left + right) / 2;
        if (tract[middle] < target) 
            {left = middle + 1;}
        // 如果数组中间和中间前一个的值都比目标值大
        else if (tract[middle] > target && tract[middle-1] > target)
            {right = middle - 1;}
        else return middle;
    }  
}

void judge(int a)
{
    if (tract[k-1] < a) tract[k++] = a;
    else tract[search(a)] = a;
}

int main()
{
    int stack[100001] = {114514}, num; scanf("%d", &num);
    int top = num;
    for (int i = 0; i < num; i++) scanf("%d", &stack[top--]);
    top = num;
    while(top) judge(stack[top--]);
    printf("%d", k);
    return 0;
}

### PTA 列车调度算法实现 #### 问题背景 PTA 列车调度问题是经典的计算机科学问题之一,通常涉及如何通过有限数量的平行轨道列车进行重新排列。该问题的核心在于设计一种高效的调度策略,使得列车能够按照指定的目标顺序从出口离开。 #### 算法思路分析 为了满足题目中的需求——即让列车按特定顺序(如递增或递减)从出口离开,可以采用 **动态规划 + 单调栈/队列** 的方式解决此问题。具体来说: -平行轨道可视为一个单调序列存储器。 - 当新列车到达时,尝试将其放置到已有的某轨道上,或者开辟一条新的轨道- 如果当前列车无法加入任何现有轨道,则需新增加一条轨道以容纳它。 这种逻辑可以通过维护一组单调递减(或递增)的子序列来模拟多轨道的行为[^1]。 #### 动态规划与优化 对于大规模输入情况下的性能瓶颈问题,可通过引入二分查找技术加速寻找适合插入的位置过程。例如,在更新过程中利用 `std::lower_bound` 函数快速定位目标位置从而减少不必要的线性扫描次数[^2]。 以下是基于上述原理的一个C++实现版本: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int main(){ int n; cin >> n; //读取火车总数 vector<int> trains(n); for(auto &t :trains){ cin>>t;//依次读入各辆火车编号 } vector<int> tails; //记录每轨道最后一个车厢号码(相当于dp数组) for(const auto& t:trains){ // 使用二分查找找到第一个大于等于当前火车号的位置 auto it = lower_bound(tails.begin(),tails.end(),t,greater<>()); if(it==tails.end()){ tails.push_back(t); //如果没有合适位置则新开辟一条轨道 } else{ *it=t; //否则替换掉对应位置上的较大值保持最小化原则 } } cout<<tails.size()<<endl; //最终结果为所需最少轨道数 return 0; } ``` #### 关键点解释 1. 上述程序采用了贪心的思想配合二分搜索技巧实现了高效求解。 2. 时间复杂度主要取决于两部分:一是外层循环遍历所有火车耗时O(N),二是内部执行二分查找操作平均时间成本约为O(logM)(其中M表示最大可能使用的轨道数目)。因此整体效率较高,适用于处理较大的数据规模场景下[^3]。 #### 特殊案例说明 考虑下面这样一个例子: 假设初始进入次序为 `{5,4,3,2,1}` ,期望输出结果应为 `1` 轨道即可完成整个调度流程;而如果是相反方向排序比如 `{1,2,3,4,5}`, 那么理论上就需要准备多达五独立路径才能达成目的[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值