洛谷1090合并果子

博客围绕果子合并问题展开,给定果子种类数和每种果子数目,要设计合并次序使耗费体力最少。介绍了输入输出格式、样例及提示,最后提到用优先队列或手搓小根堆解决问题,使用C++语言实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

扣我传送

题目

题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n − 1 n-1 n1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 1 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 3 3 3 种果子,数目依次为 1 1 1 2 2 2 9 9 9 。可以先将 1 1 1 2 2 2 堆合并,新堆数目为 3 3 3 ,耗费体力为 3 3 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 12 12 ,耗费体力为 12 12 12 。所以多多总共耗费体力 = 3 + 12 = 15 =3+12=15 =3+12=15 。可以证明 15 15 15 为最小的体力耗费值。

输入格式

共两行。
第一行是一个整数 n ( 1 ≤ n ≤ 10000 ) n(1\leq n\leq 10000) n(1n10000) ,表示果子的种类数。

第二行包含 n n n 个整数,用空格分隔,第 i i i 个整数 a i ( 1 ≤ a i ≤ 20000 ) a_i(1\leq a_i\leq 20000) ai(1ai20000) 是第 i i i 种果子的数目。

输出格式

一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2 31 2^{31} 231

样例 #1

样例输入 #1

3 
1 2 9

样例输出 #1

15

提示

对于 30 % 30\% 30% 的数据,保证有 n ≤ 1000 n \le 1000 n1000

对于 50 % 50\% 50% 的数据,保证有 n ≤ 5000 n \le 5000 n5000

对于全部的数据,保证有 n ≤ 10000 n \le 10000 n10000

代码

就一个优先队列,每次取两个加一下放回去算一下总和就好了,stl直接秒杀。

这里还是手搓一个小根堆堆来练练手吧

这里我不用数组第一个空间,这样寻找一个元素的父节点就直接是这个元素下标除2,感觉比较方便。

lower函数写的好丑,之后再想想能怎么写的简洁点吧。

#include<bits/stdc++.h>
using namespace std;

int heap[114514], top = 1;

void upper(int i) {
    if (i == 1 || heap[i] > heap[i/2]) return;
    swap(heap[i], heap[i / 2]);
    upper(i / 2);
}

void lower(int i) {
    if (2 * i > top - 1) return;

    // 无右子树
    if (2 * i + 1 > top - 1) {
        if (heap[i] < heap[2*i]) return;

        swap(heap[i], heap[2 * i]);
        lower(2 * i);
    }

    // 有右子树
    else {
        // 位置正确
        if (heap[i] < heap[2 * i] && heap[i] < heap[2 * i + 1]) return;
        // 左大右小
        else if (heap[i] >= heap[2 * i] && heap[i] < heap[2 * i + 1]) {
            swap(heap[i], heap[2 * i]);
            lower(2 * i);
        }
        // 左小右大
        else if (heap[i] < heap[2 * i] && heap[i] >= heap[2 * i + 1]) {
            swap(heap[i], heap[2 * i + 1]);
            lower(2 * i + 1);
        }
        // 都小
        else {
            // 右更小
            if (heap[2 * i] > heap[2 * i + 1]) {
                swap(heap[i], heap[2 * i + 1]);
                lower(2 * i + 1);
            }
            // 左更小
            else {
                swap(heap[i], heap[2 * i]);
                lower(2 * i);
            }
        }
    }
}

int pop() {
    if (top == 1) return -1;
    int ans = heap[1];
    heap[1] = heap[--top];
    lower(1);
    return ans;
}

void push(int x) {
    heap[top] = x;
    upper(top++);
}

int length() {
    return top - 1;
}

int main() {
    int n, temp, ans = 0;
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> temp;
        push(temp);
    }

    while (length() != 1) {
        temp = pop() + pop();
        ans += temp;
        push(temp);
    }
    cout << ans << endl;
    return 0;
}
### 关于蓝桥杯竞赛中的“合并果子”问题 #### 问题描述 在“合并果子”的问题中,给定若干果子,每果子有一定的重量。可以通过不断将两果子合并成一来减少果子的数量,直到最终只剩下一为止。每次合并的代价等于被合并的两果子的重量之和。目标是最小化总的合并代价。 --- #### 解题思路 该问题的核心在于如何通过合理的策略使得总合并代价最小。此问题通常采用 **贪心算法** 来解决,其基本思想如下: 1. 使用优先队列(最小)存储每一果子的重量。 2. 每次从优先队列中取出权重最小的两个果子进行合并,并计算此次合并的代价。 3. 将新合并后的果子重新加入优先队列。 4. 不断重复上述过程,直至队列中仅剩下一果子。 这种做法能够保证每次都选取当前最轻的两果子进行合并,从而尽可能减小后续操作的开销[^2]。 --- #### 算法实现 以下是基于 Python 的具体实现代码: ```python import heapq def merge_fruits(weights): # 初始化最小 heapq.heapify(weights) total_cost = 0 while len(weights) > 1: # 取出当前最轻的两果子 first_min = heapq.heappop(weights) second_min = heapq.heappop(weights) # 计算本次合并的代价 cost = first_min + second_min # 更新总代价 total_cost += cost # 将新的果子放回中 heapq.heappush(weights, cost) return total_cost # 测试数据 weights = [1, 2, 3, 4] result = merge_fruits(weights) print(f"最小化的总合并代价为: {result}") ``` --- #### 复杂度分析 - 时间复杂度:由于使用了优先队列(最小),每次插入或删除操作的时间复杂度为 \(O(\log n)\),而整个过程中需要执行 \(n-1\) 次合并操作,因此总体时间复杂度为 \(O(n \log n)\)。 - 空间复杂度:主要由优先队列占用的空间决定,空间复杂度为 \(O(n)\)。 --- #### 总结 对于“合并果子”这一类问题,利用贪心算法并通过优先队列优化可以高效求解。需要注意的是,在实际应用中应确保输入数据的有效性和合理性,例如验证是否存在至少两果子可供合并。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值