ac3483二的幂次方

文章描述了一道编程题,要求将正整数转化为仅包含2的指数形式,如137表示为2(7)+2(3)+2(0)。解题思路是利用递归,通过二进制拆分数字,然后用栈处理输出顺序。代码中定义了一个名为`summon`的递归函数,处理从输入数字拆分出的每个因子。
摘要由CSDN通过智能技术生成

题目

扣我传送

每个正数都可以用指数形式表示。

例如,137=27+23+20

让我们用 a(b) 来表示 ab

那么 137 可以表示为 2(7)+2(3)+2(0)。

因为 7=2(2)+2+2(0),3=2+2(0),所以 137 最终可以表示为 2(2(2)+2+2(0))+2(2+2(0))+2(0)。

给定一个正数 n ,请你将 n 表示为只包含 0 和 2 的指数形式。

输入格式

输入包含多组数据。

每组数据占一行,一个正数 n

输出格式

每组数据输出一行,一个指数形式表示。

数据范围

1≤n≤20000 每个输入最多包含 100 组数据。

输入样例:
1315
输出样例:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

思路和代码

这道题用递归来写。

递归这个东西刚刚接触的时候会觉得有点难想,但是想通了就很好写,会写的很爽。

我稍微分享下我分析递归的心得吧:

  • 假设这个递归你已经写完了,能直接用。
  • 分析问题,看怎么拆分成子问题
  • 找到特殊的结束递归点

这不是废话吗


思路

递归的函数要干什么?

假设递归写完的前提是你得知道你写的函数是做什么的。对这道题直接就是题目问的东西了:

输入一个数,输出其只包含0, 2的指数形式。

这样我们就直接假设我们已经实现这个功能了,我们来具体看看怎么拆分成子问题。

拆分子问题

题目提示了。137拆分为137=27+23+20。那很明显子问题就是把7,3,0再递归下。

电脑都是二进制存的,用二进制看题目的拆分的话非常简单,就是哪个位置上有1才分的结果就有2的某位次方。因此只要不断右移再与1就能拆分提取了,如:

stack<int> s;
int count = 0;
while (n) {
    if (n & 1) s.push(count);
    n >>= 1;
    count++;
}

这里使用栈是注意到题目输出的顺序是按幂大到小的,而我是按小到大来拆这个数的。栈能直接实现逆序。

拆分之后就是输出了。这里的格式有些麻烦:

当拆分出来的是2的1次幂,就是2时,要直接输出2

所以能写出如下的代码:

while (!s.empty()) {
    cout << "2";
    if (s.top() == 1) {  // 2的1次幂 
        cout << (s.size() == 1 ? "" : "+");  // 判断要不要“+”,下同
    }
    else {
        cout << "(";
        summon(s.top());  // 调用递归
        cout << (s.size() == 1 ? ")" : ")+");
    }
    s.pop();
}

结束递归的条件?

这更简单不过了,题目要求所有的数都用0或2表示,那特殊的点肯定就是这两个了。

  • 输入2 直接输出2

  • 输入0 直接输出0

这个代码就不单独放上来了。

那么这题就写完了

代码

// https://www.acwing.com/problem/content/description/3486/
#include<bits/stdc++.h>
using namespace std;

void summon(int n) {
    if (n==0) {
        cout << "0";
        return;
    }
    if (n==2) {
        cout << "2";
        return;
    }

    stack<int> s;
    int count = 0;
    while (n) {
        if (n & 1) s.push(count);
        n >>= 1;
        count++;
    }
    
    while (!s.empty()) {
        cout << "2";
        if (s.top() == 1) {
            cout << (s.size() == 1 ? "" : "+");
        }
        else {
            cout << "(";
            summon(s.top());
            cout << (s.size() == 1 ? ")" : ")+");
        }
        s.pop();
    }
    
}

int main() {
    int n;
    while (cin >> n) {
        summon(n);
        cout << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值