神经网络学习笔记-02-循环神经网络

本文是关于循环神经网络(RNN)的学习笔记,介绍了RNN在处理序列化信息如语言翻译和语音识别中的应用。文章详细讲解了RNN的状态概念,用于传递上下文信息,区别于传统神经网络的静态输入和固定隐藏层结构。通过一个自然语言模式识别的例子,阐述了RNN的数据处理、输入输出特点以及权重计算。此外,还讨论了RNN的训练流程和初始化策略。
摘要由CSDN通过智能技术生成

神经网络学习笔记-02-循环神经网络

本文是根据WildML的Recurrent Neural Networks Tutorial写的学习笔记。
不推荐阅读(写的不好)

循环神经网络

循环神经网络适用于处理序列化信息,比如:语言翻译,语音识别等。

如果,我们要实现一个翻译功能。首先需要理解原句中每个单词的含义。
这就需要根据上下文来理解。
假如:原句中的每个单词,以此对应神经网络中一个隐藏层。
在传统的神经网络框架中,隐藏层直接传递的是一个矢量Out。
这个Out矢量是原句当前每个词的一个输出,比如:含义等等。
那么,如何保存和传递上下文这个信息呢?
循环神经网络提出一个状态(state)的概念,用于传递上下文

  • 折叠图
Recurrent Neural NetworkUxVoWs
  • 展开图
Recurrent Neural Networks_t = tanh(x_tU + s_{t_1}W)o_t = softmax(s_tV)WUXt-1UXtUXt+1VOt-1WSt-1VOtWStVOt+1WSt+1

循环神经网络框架的一点解释

与传统的神经网络架构有许多不同之处。

  • 输入方式不同
    传统的神经网络架构是静态输入,输入数据在开始前已经准备好了,并且一次全部从输入层导入。
    循环神经网络是动态输入,每个隐藏层有一个输入,表示在时间t上的输入。

  • 隐藏层,每层的节点数不同
    传统的神经网络架构,每个隐藏层有多个节点。
    循环神经网络,每个隐藏层有一个节点。

  • 输出不同
    循环神经网络,每个隐藏层有两个输出: output和state。

  • 权重
    循环神经网络需要计算三个权重(w, b),分别是\(U,V,W\)
    这三个权重是在隐藏层上共享的。

原文的例子

原文中计划实现一个循环神经网络,用于发现自然语言句子中单词出现的模式,最终可以生成一些合理的句子。

  • 数据来源
    原文中,从网上下载了很多条句子(英文的)。

  • 数据的前期处理
    首先,统计了所有单词(包括标点符号)。
    取出最常见的7997单词,并且编号,每个单词有一个token。
    设置了3个特殊的token:
    UNKNOWN_TOKEN:匹配没有在8000列表中的单词。
    SENTENCE_START: 表示句子开始。
    SENTENCE_END: 表示句子结束。

  • 输入和输出
    输入x的维度是8000,意味着可以接受的句子长度最大是8000。
    输出y的维度是8000,和x一一对应。
    下面是一个句子构造后的实际例子:

    x:
    SENTENCE_START what are n't you understanding about this ? !
    [0, 51, 27, 16, 10, 856, 53, 25, 34, 69]
    y:
    what are n't you understanding about this ? ! SENTENCE_END
    [51, 27, 16, 10, 856, 53, 25, 34, 69, 1]

理解:y的每n位是x前n位的期望输出。

每个输入\(X_t\)(尽管有8000维),只有一个维度有值且为1,代表第\(t\)的单词的token的维度。
比如:what的token是51。那么\(X_t\)只有第51位为1,其它都是0。
这个叫做one-hot vector。
输出:每个token的可能性。

state的维度是100。

  • 计算公式和维度
    \[ s_t = tanh(x_tU + s_{t_1}W) \\ o_t = softmax(s_tV) \\ where \\ x_t.dimension = 8000 \\ o_t.dimension = 8000 \\ s_t.dimension = 100 \\ U.dimension = 100 * 8000 : x_tU \text{ is a 100 dimension vector} \\ W.dimension = 100 * 100 : s_{t_1}W \text{ is a 100 dimension vector} \\ V.dimension = 8000 * 100 : s_tV \text{ is a 8000 dimension vector} \]

  • 初始化U,V,W
    初始化很重要。跟激活函数(这里是tanh)有关。
    U,V,W每个元素是一个位于区间\(\left [ -\sqrt{n}, \sqrt{n} \right ]\)的随机数。\(n\)是输入数的长度。

循环神经网络训练流程

Recurrent Neural Network - Training ProcessPrepare DataInitialize Model {U, V, W}Forward PropagationxCalculate Lossy'Back Propagation Trough TimeL(cross-entropy loss)Gradient Descent{ΔL/ΔU, ΔL/ΔV, ΔL/ΔW}iterate{U, V, W}Result: {U, V, W}

参照

  • Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值