LGAN

Global versus Localized Generative Adversarial Nets

作者首先给出了传统 G A N GAN GAN网络的表述:首先由噪声分布 P z P_z Pz采样得到流型 M = G ( z ) ∣ z   P z M={G(z)|z ~P_z} M=G(z)z Pz,所谓的Global指的就是 z z z为一个 R N R^N RN空间的全局坐标,而 G ( z ) G(z) G(z),即生成的样本则是 R D R^D RD空间的点。
这种全局坐标的缺点在于,给定一个 X = G ( z ) X=G(z) X=G(z),无法简便的得到相应的 z z z,更糟糕的是如果在 X X X周围的切空间 T x T_x Tx如果不是一个由 N N N个线性无关的向量组成的 N N N维空间(这里不是很懂为什么 X X X的附近是一个 N N N维切空间,按说 X X X是位于 R D R^D RD空间的)那么就会发生locally collapsed,意思是在 X X X附近无论 z z z在什么方向上变化都无法产生连续变化的 G ( z ) G(z) G(z)了。
作者为此提出了LGAN,在 X X X周围产生了局部坐标图 G ( x , z ) G(x,z) G(x,z),作者认为应该有 G ( x , 0 ) = x G(x,0)=x G(x,0)=x
当在 X X X的周围改变 z j z_j zj(z的一个分量)而固定其他分量时,生成的 G ( x , z ) G(x,z) G(x,z)就会在流型上生成一个曲线。由此定义了切向量 T x j = d G ( x , z ) d z j ∣ z = 0 T_x^j=\frac{dG(x,z)}{dz^j}|z=0 Txj=dzjdG(x,z)z=0这是一个 D D D维的向量,即 D D D维向量 G ( x , z ) G(x,z) G(x,z) z z z的其中一个维度(方向)上求导数。 T x T_x Tx是一个 N ∗ D N*D ND的雅可比矩阵。
为了防止之前所说的locally collapse,需要对 T x T_x Tx加入正交约束,即 &lt; T x i , T x j &gt; = δ i j &lt;T^i_x,T^j_x&gt;=\delta_{ij} <TxiTxj>=δij i ! = j i!=j i!=j时为0,当 j = i j=i j=i时为1.
因此 G ( x , z ) G(x,z) G(x,z)需要满足上面两条约束。即 G ( x , 0 ) = x G(x,0)=x G(x,0)=x以及 J x T J x = I N J_x^{T}J_x=I_N JxTJx=IN,其中 J J J为上面提到的雅克比矩阵。
因此引入了新的损失函数: ω G ( x ) = μ ∣ ∣ G ( x , 0 ) − x ∣ ∣ 2 + η ∣ ∣ J x T J x − I N ∣ ∣ 2 \omega_{G}(x)=\mu||G(x,0)-x||^2+\eta||J_x^{T}J_x-I_N||^2 ωG(x)=μG(x,0)x2+ηJxTJxIN2
这个损失函数被添加在generator训练中,即 m i n G − l o g D ( G ( x , z ) ) + ω G ( x ) min_G -logD(G(x,z))+\omega _G(x) minGlogD(G(x,z))+ωG(x)

网络结构

generator的结构:
输入图片,经过卷积层映射为32x1x1特征图,与相同维度的噪声z相加,然后进行反卷积生成 G ( x , z ) G(x,z) G(x,z),D网络的结构与传统GAN网络相同。
作者在celeb-A数据集上进行了实验。在这个数据集上作者使用了32维的局部坐标(即 z z z是N=32的向量),图中的每一行是改变32维中的1维然后保持其他维度不变得到的,即在某个方向上进行移动。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值