__阿健__
码龄10年
关注
提问 私信
  • 博客:255,572
    255,572
    总访问量
  • 41
    原创
  • 1,797,771
    排名
  • 65
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2014-12-04
博客简介:

__阿健__的博客

查看详细资料
个人成就
  • 获得236次点赞
  • 内容获得23次评论
  • 获得1,114次收藏
  • 代码片获得505次分享
创作历程
  • 1篇
    2022年
  • 32篇
    2020年
  • 11篇
    2019年
成就勋章
TA的专栏
  • Python
    19篇
  • 数据结构与算法
    4篇
  • 机器学习 Machine Learning
    1篇
  • 深度学习 Deep Learning
    5篇
  • 深度学习框架
    5篇
  • 计算机视觉 Computer Vision
    4篇
  • 生成对抗网络 GAN
    5篇
  • Linux服务器使用
    1篇
  • Git 版本管理
  • 数字图像处理
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【Python】Jupyter Notebook (原名 IPython Notebook) 详细介绍,常见问题及解决对策

简单来讲,IPython 是一个 加强版 的 Python 交互式解释器,与 原生的 Python shell 相比,IPython具有以下优势:与Shell紧密关联,可以 在IPython环境下直接执行Shell指令;提供了支持绘图操作的Web GUI环境(IPython Notebook),在机器学习领域、探索数据模式、可视化数据、绘制学习曲线时,这一功能特别有用;
原创
发布博客 2022.03.25 ·
6911 阅读 ·
7 点赞 ·
0 评论 ·
32 收藏

【Python】列表解析式,列表推导式,列表生成式(List Comprehensions)

列表生成式即 List Comprehensions,是 Python 内置的非常简单却强大的可以用来创建 list 的生成式。举个例子,...
转载
发布博客 2020.12.29 ·
527 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【算法题常见解题模式(套路)】Breadth First Search in Binary Tree (树的BFS)

问题特点:要求 按照层的顺序 对树进行操作方法思路:树的宽度优先搜索(Breadth First Search (BFS)),借助 队列(queue) 的数据结构来实现【在 Python 中,可以借助 collections.deque 实现队列的数据结构】。
原创
发布博客 2020.10.19 ·
768 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

【目标检测】目标检测算法评估指标(性能度量) AP,mAP 详细介绍

如何评估(evaluate)目标检测算法的表现(performance)?目标检测算法的评估 和 分类算法的评估 有所不同,在目标检测任务中,我们即需要 识别出正确的目标类别,又需要 定位出准确的目标位置。评估目标检测算法性能 最常用的指标 是 AP (average precision,针对单类别) 和 mAP (mean AP,针对多类别)。
原创
发布博客 2020.10.09 ·
6956 阅读 ·
20 点赞 ·
0 评论 ·
56 收藏

【文献阅读】Fixed-Point-GAN,不动点GAN(2019,ICCV)

《Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization》这篇文章的主要工作是 针对 StarGAN 进行跨域转换时倾向于进行不必要不相关的变化,以及不能很好地处理同域转换 的问题进行了改进,并在此基础上创新性地 将图像转换拓展应用于 异常的弱监督检测和定位,仅需要图像级的标注。
原创
发布博客 2020.09.26 ·
1345 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【表面缺陷检测】常用开源表面缺陷检测数据集 整理

数据集是深度学习研究的基础,开源数据集为各种论文方法提供了 比较的基准。不同于经典计算机视觉任务中的 ImageNet、PASCAL VOC2007/2012 和 COCO 等数据集,表面缺陷检测并没有一个统一的,大规模的数据集,不同的缺陷检测数据集,在 样本数量,正负样本比例,复杂度 等方面都有很大的不同。不同的缺陷数据集往往适用于不同的方法。不同的检测设定下的研究往往基于不同的缺陷数据集。这里对一些常用的表面缺陷检测数据集进行了整理汇总。
原创
发布博客 2020.09.12 ·
24713 阅读 ·
24 点赞 ·
7 评论 ·
273 收藏

【算法题常见解题模式(套路)】Binary Search (二分查找,二分法)

二分法,也就是二分查找,用二分的方式去查找。简单来讲,二分查找的 核心思路 就是 取中间项进行判断,利用列表的有序性在 O(1) 的时间内将问题的规模缩小至一半(砍掉一半的项)【从 n 到 n/2 再到 n/4……,最终到 1,即查找完毕】
原创
发布博客 2020.08.06 ·
793 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【数据结构与算法】常用排序算法(冒泡、选择、插入、归并、快速)超详细介绍,附代码

排序,即将序列(数组,链表)中的元素按照大小顺序进行排列。这边列举了最常用的几种排序算法,包括算法面试必须掌握的O(NlogN)复杂度的归并排序和快速排序,以及基础的冒泡排序、选择排序和插入排序。
原创
发布博客 2020.07.28 ·
1205 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【Python】Python语法基础——异常处理机制 try...except...finally...

我们在设计程序时,肯定希望程序是鲁棒的健壮的,在运行时能够不出或者少出问题。但是,在实际运行中,总会有一些因素可能导致程序无法正常运行。所谓异常处理机制,就是提供了对错误异常的处理手段:当程序出错时,程序不是立刻报错终止,你可以根据异常类型进行相应的处理,同时,程序可以继续运行下去。通常高级语言都内置了异常处理机制,像Java,Python也不例外,内置了一套try...except...finally...的异常处理机制。
原创
发布博客 2020.07.24 ·
392 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Python】Python中 在函数内部对函数外的变量进行操作

在Python中,如果想函数内部对函数外的变量进行操作,有一些问题(一些在Java,C中再正常不过的操作这里就不行)
原创
发布博客 2020.06.29 ·
20233 阅读 ·
24 点赞 ·
1 评论 ·
35 收藏

Python 随机种子介绍,PyTorch 中随机种子的设置与应用

随机种子是针对随机方法而言的。常见的随机方法有 生成随机数,以及其他像 随机排序 之类的,后者本质上也是基于生成随机数来实现的。在深度学习中,比较常用的随机方法的应用有:网络的随机初始化,训练集的随机打乱等。
原创
发布博客 2020.06.03 ·
10089 阅读 ·
23 点赞 ·
4 评论 ·
84 收藏

【Python】Python语言进阶——魔法方法介绍

魔法方法,是Python从入门到进阶很重要的一点。魔法方法是python类中的一些特殊的方法,被双下划线所包围,像这种格式:__方法名__正如其名,“魔法”方法非常强大,充满魔力,可以让你实现很多功能。魔法方法的特殊之处在于,这些方法并非主动显示调用的,而是在特殊的情况下被调用的,比如__init__是在类的实例化时执行的方法,__len__是在调用len()函数时执行的方法,你可以通过实现(重载)这些方法自定义自己想要的行为。
原创
发布博客 2020.05.22 ·
265 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Python】轻量级IDE Sublime Text3 介绍,快速上手(python环境搭载、插件安装、项目管理)

Sublime Text (ST)是一款具有代码高亮、语法提示、自动补全且反应快速的编辑器软件,不仅具有华丽的界面,还支持插件扩展机制,最重要的是非常的轻便。
原创
发布博客 2020.05.14 ·
537 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【计算机视觉】针对图像的 Data Augmentation (数据扩充) 介绍,常用方法和 TensorFlow 实现

This article is a comprehensive review (全面回顾) of Data Augmentation techniques for Deep Learning, specific to images.
转载
发布博客 2020.04.21 ·
2949 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

【深度学习框架】TensorFlow 选择计算设备 CPU/GPU

在计算实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源。TensorFlow 支持 CPU 和 GPU 两种计算设备。一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测。如果检测到 GPU, TensorFlow 会优先利用找到的第一个 GPU 来执行操作。如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU...
原创
发布博客 2020.04.06 ·
1158 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【深度学习】神经网络(Neural Networks)基础之一——神经网络基本结构

我们常说的 深度学习 ,其实就是指 神经网络 ,尤其是 大规模的神经网络。那么神经网络究竟是什么?本质上,神经网络属于一种强大有效的机器学习方法 (模型),同样是通过数据驱动,从数据中学习。最初神经网络算法的诞生是出于 对生物神经系统建模 的目的,但随后与其分道扬镳,成为一个 独立的工程问题,并在机器学习领域取得良好的效果。
原创
发布博客 2020.04.04 ·
7289 阅读 ·
9 点赞 ·
0 评论 ·
43 收藏

【深度学习】计算的向量化(Vectorization),实现简化代码,加速计算(CPU/GPU并行计算)

当我们 应用深度学习算法,实现 大网络(网络的参数量 nn 很大),多样本(样本数量 mm 很大) 情形下的 大规模 计算处理时,通过 向量化 的方式,将 高度重复的计算组织成 并行的向量运算,对于 简化代码,加速运算 有着非常重要的作用。
原创
发布博客 2020.04.03 ·
2981 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏

【深度学习基础】深度学习符号定义(符号表示,符号惯例,符号约定)

实现神经网络的时候,一个好的符号约定能够对繁多的样本数据和网络参数,神经网络的复杂计算等进行有条理地 组织 和 表示。数据标记与上下标xxx:表示输入数据,维度为 nxn_xnx​;yyy:表示输出结果,维度(或者说类别数)为nyn_yny​;上标 (i)^{(i)}(i)(小括号):代表第 iii 个训练样本,x(i)x^{(i)}x(i) 和 xix_ixi​ 存在混用的情况,注...
原创
发布博客 2020.04.04 ·
6101 阅读 ·
1 点赞 ·
1 评论 ·
19 收藏

【目标检测】YOLO v1 (You Only Look Once) 详细解读

YOLO(You Only Look Once),是yolo系列的 开山之作,也是 深度学习领域第一个one-stage detector。作为一个 one-stage 检测器,YOLO 没有生成建议框这一步骤,它 直接将图片划分为 S×S 个网格 (grid cell),每个网格对 中心点落入其中的目标 进行检测【如果目标的中心点落入某个格子中,我们就说这个格子 “包含” 了这个目标,就由这个格子负责对这个目标的检测】。
原创
发布博客 2020.04.29 ·
3364 阅读 ·
5 点赞 ·
1 评论 ·
17 收藏

【Python】Python中 if...else...同行 实现三目运算符(条件运算符)

三目运算符(条件运算符)C++ 和 Java 中的三目运算符(条件运算符):b ? x : y先计算条件 b,然后进行判断。如果 b 的值为 true,计算 x 的值,运算结果为 x 的值;否则,计算 y 的值,运算结果为y的值。一个条件表达式不会既计算 x,又计算 y。Python中实现三目运算(条件运算)Python语言中,可以通过 同一行的if else语句 实现类似的三目运算(...
原创
发布博客 2020.03.14 ·
1901 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏
加载更多