【论文阅读】PF-Net: Point Fractal Network for 3D Point Cloud Completion

PF-Net是一种基于深度学习的点云分形网络,用于修复缺失的3D点云。通过多分辨率编码器和点云金字塔解码器,该方法能有效保留物体的空间结构和局部特性。使用多阶段完成损失和对抗损失函数,提高了点云补全的精度,减少了几何结构瑕疵和类别间的特征干扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PF-Net: Point Fractal Network for 3D Point Cloud Completion

1. 背景

  • 从激光雷达等设备中获取的点云往往有所缺失(反光、遮挡等),这给点云的后续处理带来了一定的困难,也凸显出点云补全作为点云预处理方法的重要性。
  • 点云补全(Point Cloud Completion)用于修补有所缺失的点云(Point Cloud),从缺失点云出发估计完整点云,从而获得更高质量的点云。点云有助于用较小的数据量描述三维物体,在三维物体的检测识别领域应用广泛。

2. 相关工作

  • 传统的点云补全方法基于一定的物体基础结构的先验信息,如对称性信息语义类信息等,通过一定的先验信息对缺失点云进行修补。这类方法只能处理一些点云缺失率很低、结构特征十分明显的缺失点云
  • PointNetPointNet++ 使用深度学习网络实现了点云分割和点云分类之后,点云深度学习逐渐成为热门研究领域。
  • LGAN-AEPCN, 和 3D-Capsule 等,这些工作以不完整点云作为输入,输出完整点云,造成网络过于关注到物体的整体特征而忽略了缺失区域的几何信息。另一方面,这些网络会生成偏向于某类物体共性特征的点云,而失去某个物体的个体特征。(这些工作更注重于学习属性或者类别的一般特征而不是学习某一特定对象的局部细节)容易改变原有物体的特性(位置错误、几何特征丢失、形状扭曲等)。

3. 简介

  • 文章提出一种基于深度学习的点云分形网络PF-Net。PF-Net采用了一些自己的思路和方法来改善现有的问题:
    1. 以不完整点云作为输入,仅输出缺失部分点云,可保留物体点云的空间结构,对物体的局部特性感知更好
    2. 提出了更优的点云特征提取器多分辨率编码器(Multi-Resolution Encoder),多尺度的方法提升了高低层次点云语义信息提取的效率;
    3. 提出了点云金字塔解码器
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值