1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
Sample Input
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
Sample Output
Yes Yes
本来以为是并查集的应用,结果是最短路。真是傻傻分不清,因为题意要求的是得两个人之间的得用六个关系认识,你还不能超过六个人认识,所以并查集就错了。你用最短路的时候把相连的道路距离定义成一,然后去判断每两个人之间的距离有没有超过六个,如果都没有的话,就符合题意了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int main()
{
int n,m,a,b,c;
while(~scanf("%d%d",&n,&m)&&n+m)
{
int map[110][110],flag=1;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
if(i==j)
{
map[i][j]=0;
map[j][i]=0;
}
else
{
map[i][j]=inf;
map[j][i]=inf;
}
for(int i=1; i<=m; i++)
{
scanf("%d%d",&a,&b);
map[a][b]=1;
map[b][a]=1;
}
for(int k=0; k<n; k++)
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
if(map[i][j]>map[i][k]+map[k][j])
map[i][j]=map[i][k]+map[k][j];
}
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
if(map[i][j]>7)
{
flag=0;
break;
}
if(flag==0)
break;
}
if(!flag)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}