排序算法比较与C++实现

转自:AscenZ博客


总结图:

1、 直接插入排序
(1)直接实现
void InsertSort(int arr[],int n){
    for (int i =1;i <= n;++i){
        for(int j = i;j > 0;--j){
            if(arr[j] < arr[j -1]){
                int temp = arr[j];
                arr[j] = arr[j - 1];
                arr[j - 1] = temp;
            }
        }
    }
}
(2)使用vector实现
void InsertSort2(vector<int> &num){
    for(int i = 1;i < num.size();++i){
        for(int j = i;j > 0;--j){
            if(num[j] < num[j - 1]){
                int temp = num[j];
                num[j] = num[j-1];
                num[j-1] = temp;
            }
        }
    }
}
2、冒泡排序
void BubbleSort(int arr[], int n)
{
    for (int i = 0; i < n - 1; i++) {
        for (int j = 0; j < n - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}
3、快速排序

快速排序首先选一个轴值(pivot,也有叫基准的),将待排序记录划分成独立的两部分,左侧的元素均小于轴值,右侧的元素均大于或等于轴值,然后对这两部分再重复,直到整个序列有序。过程是和二叉搜索树相似,就是一个递归的过程。

快速排序时间复杂度的最好情况和平均情况一样为O(nlog2 n),最坏情况下为O(n^2 ),这个看起来比前面两种排序都要好,但是这是不稳定的算法,并且空间复杂度高一点( O(nlog2 n),而且快速排序适用于元素多的情况。

QuickSort(int arr[], int first, int end){
 int pivot = OnceSort(arr,first,end);
 //已经有轴值了,再对轴值左右进行递归
 QuickSort(arr,first,pivot-1);
 QuickSort(arr,pivot+1,end);
}

void OnceSort(int arr[], int first, int end){
 int i = first,j = end;
 //当i<j即移动的点还没到中间时循环
 while(i < j){
  //右边区开始,保证i<j并且arr[i]小于或者等于arr[j]的时候就向左遍历
  while(i < j && arr[i] <= arr[j]) --j;
  //这时候已经跳出循环,说明j>i 或者 arr[i]大于arr[j]了,如果i<j那就是arr[i]大于arr[j],那就交换
  if(i < j){
   int temp = arr[i];
   arr[i] = arr[j];
   arr[j] = temp;
  }
  //对另一边执行同样的操作
  while(i < j && arr[i] <= arr[j]) ++i;
  if(i < j){
   int temp = arr[i];
   arr[i] = arr[j];
   arr[j] = temp;
  }
 }
 //返回已经移动的一边当做下次排序的轴值
 return i;
}

4、堆排序

堆的结构类似于完全二叉树,每个结点的值都小于或者等于其左右孩子结点的值,或者每个节点的值都大于或等于其左右孩子的值。堆排序过程将待排序的序列构造成一个堆,选出堆中最大的移走,再把剩余的元素调整成堆,找出最大的再移走,重复直至有序。堆排序的时间复杂度最好到最坏都是O(nlogn),较多元素的时候效率比较高。

//堆排序
void HeapSort(int arr[],int len){
    int i;
    //初始化堆,从最后一个父节点开始
    for(i = len/2 - 1; i >= 0; --i){
        Heapify(arr,i,len);
    }
    //从堆中的取出最大的元素再调整堆
    for(i = len - 1;i > 0;--i){
        int temp = arr[i];
        arr[i] = arr[0];
        arr[0] = temp;
        //调整成堆
        Heapify(arr,0,i);
    }
}

void Heapify(int arr[], int first, int end){
    int father = first;
    int son = father * 2 + 1;
    while(son < end){
        if(son + 1 < end && arr[son] < arr[son+1]) ++son;
        //如果父节点大于子节点则表示调整完毕
        if(arr[father] > arr[son]) break;
        else {
         //不然就交换父节点和子节点的元素
            int temp = arr[father];
            arr[father] = arr[son];
            arr[son] = temp;
            //父和子节点变成下一个要比较的位置
            father = son;
            son = 2 * father + 1;
        }
    }
}


5、归并排序

归并排序的基本思想是将若干个序列进行两两归并,直至所有待排序记录都在一个有序序列为止

这个图很有概括性,来自维基
2016-07-15_归并排序.gif

我们也可以用递归的思想,每次合并就是一次递归
首先,将一整个序列分成两个序列,两个会分成4个,这样分下去分到最小单位,然后开始合并。

void Merge(int arr[], int reg[], int start, int end) {
    if (start >= end)return;
    int len = end - start, mid = (len >> 1) + start;

    //分成两部分
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    //然后合并
    Merge(arr, reg, start1, end1);
    Merge(arr, reg, start2, end2);


    int k = start;
    //两个序列一一比较,哪的序列的元素小就放进reg序列里面,然后位置+1再与另一个序列原来位置的元素比较
    //如此反复,可以把两个有序的序列合并成一个有序的序列
    while (start1 <= end1 && start2 <= end2)
        reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];

    //然后这里是分情况,如果arr2序列的已经全部都放进reg序列了然后跳出了循环
    //那就表示arr序列还有更大的元素(一个或多个)没有放进reg序列,所以这一步就是接着放
    while (start1 <= end1)
        reg[k++] = arr[start1++];

    //这一步和上面一样
    while (start2 <= end2)
        reg[k++] = arr[start2++];
    //把已经有序的reg序列放回arr序列中
    for (k = start; k <= end; k++)
        arr[k] = reg[k];
}

void MergeSort(int arr[], const int len) {
    //创建一个同样长度的序列,用于临时存放
    int  reg[len];
    Merge(arr, reg, 0, len - 1);
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值