[NOI.AC省选模拟赛3.23] 集合 [数学]

本文探讨了在组合数学中,如何高效计算特定条件下的期望值。通过巧妙地利用二项式定理和概率论原理,作者提出了一种新颖的方法来解决给定问题,将复杂度从O(n-k)降低到O(k),并提供了详细的推导过程和代码实现。
摘要由CSDN通过智能技术生成

题面

传送门

一句话题意:

给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$

设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lbrace S\rbrace (S\subseteq U, \lvert S \rvert =k))^T$的期望

重要思想

注意,在遇到包含

思路

首先,通过枚举$S$集合最小值选取哪个数,可以得到:

$Ans(k)=\sum_{i=1}^n \binom{n-i}{k-1} T^i$

然后,通过枚举$S$集合最小值至少是多少,并且每次累加比上一次还大的可能性,可以得到:

$Ans(k)=T\binom{n}{k}+\sum_{i=1}^{n-1} \binom{n-i}{k}T^i(T-1)$

发现这个式子的后面一部分可以表示成第一个式子:

$Ans(k)=T\binom{n}{k}+(T-1)Ans(k+1)$

从$Ans(n)$开始往下累加一下,可以得到:

$Ans(k)=T(\sum_{i=0}^{n-k}\binom{n}{k+i}(T-1)^i)=T(\sum_{i=k}^n\binom{n}{k}(T-1)^{i-k}$

这个式子要$O(n-k)$的时间,做不了,考虑怎么把它变成能算的$O(k)$

考虑二项式定理:$\sum_{i=0}^n (T-1)^i\binom{n}{i}=(T-1+1)^n=T^n$

所以$Ans(k)=\frac{T}{(T-1)^k}(T^n-\sum_{i=0}^{k-1} (T-1)^i\binom{n}{i})$

就可以直接算了

最后不要忘了除以$\binom{n}{k}$,求得是期望

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define MOD 998244353
#define ll long long
using namespace std;
inline int read(){
    int re=0,flag=1;char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-') flag=-1;
        ch=getchar();
    }
    while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
    return re*flag;
}
inline int qpow(int a,int b){
    int re=1;
    while(b){
        if(b&1) re=1ll*re*a%MOD;
        a=1ll*a*a%MOD;b>>=1;
    }
    return re;
}
int n,k,A;int f[10000010],finv[10000010];
void init(){
    int i,len=10000000;
    f[0]=f[1]=finv[0]=finv[1]=1;
    for(i=2;i<=len;i++) f[i]=1ll*f[i-1]*i%MOD;
    finv[len]=qpow(f[len],MOD-2);
    for(i=len;i>2;i--) finv[i-1]=1ll*finv[i]*i%MOD;
    for(i=1;i<=k;i++) f[i]=1ll*f[i-1]*(n-i+1)%MOD;
}
int C(int x,int y){
    return 1ll*f[y]*finv[y]%MOD;
}
int main(){
    n=read();k=read();A=read();
    if(A==1){puts("1");return 0;}
    init();int i,ans=1ll*A*qpow(qpow(A-1,k),MOD-2)%MOD,tot=qpow(A,n),p=1;
    for(i=0;i<k;i++){
        tot=(1ll*tot-1ll*p*C(n,i)%MOD+MOD)%MOD;
        p=1ll*p*(A-1)%MOD;
    }
    printf("%lld\n",1ll*ans*tot%MOD*qpow(C(n,k),MOD-2)%MOD);
}

转载于:https://www.cnblogs.com/dedicatus545/p/10589998.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值