实变函数总集篇

>参考视频 http://www.1ketang.com/vod/1431-play.html?1431-0-2 已失效

1.集合

集合是具有一定性质的对象的全体,通常用大写字母A,B,C,D…表示。
集合中的对象称为集合的元素,用小写字母表示a,b,c,d…。
不含任何元素的集合称为空集。
集合的表示:列举法,描述法
差集 设A和B是两个集合,称 { x : x ∈ A , x ∉ B } \lbrace x:x\in A,x\notin B \rbrace {x:xA,x/B}称为A与B的差集,记作A\B。
i.e.表示‘即’
s.t.表示‘使得’ subject to 缩写

2.多个集合的关系

令I为某个指标集合,集合族 { A i ∣ i ∈ I } \lbrace A_i|i\in I\rbrace {AiiI}表示一族集合
集合族的并与交
⋃ i ∈ I A i = { x ∣ ∃ i ∈ I   s . t .   x ∈ A i } \bigcup_{i\in I}A_i=\lbrace x|\exists i \in I  s.t. x\in A_i \rbrace iIAi={xiI s.t. xAi}
⋂ i ∈ I A i = { x ∣ ∀ i ∈ I   s . t .   x ∈ A i } \bigcap_{i\in I}A_i=\lbrace x|\forall i \in I  s.t. x\in A_i \rbrace iIAi={xiI s.t. xAi}
A ⋂ ( ⋃ i ∈ I A i ) = ⋃ i ∈ I ( A i ⋂ A ) A\bigcap(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}(A_i\bigcap A) A(iIAi)=iI(AiA)
A ⋃ ( ⋂ i ∈ I A i ) = ⋂ i ∈ I ( A i ⋃ A ) A\bigcup(\bigcap_{i\in I}A_i)=\bigcap_{i\in I}(A_i\bigcup A) A(iIAi)=iI(AiA)
任意表示交,存在表示并。

3. 集合的幂集

设A={1,-1},A的子集有 ∅ \emptyset ,{1},{-1},{1,-1}
B={ ∅ \emptyset ,{1},{-1},{1,-1}},B称为A的幂集。

给定一个集合X,X的所有子集构成集合称为X的幂集,记作 2 X 2^X 2X

如果 A 有n个元素,则 2 A 2^A 2A 2 n 2^n 2n个元素。

4.上极限集与下极限集

{ A k } \lbrace A_k \rbrace {Ak}是一集合列,则 lim ⁡ k → + ∞ ‾ A k = ⋃ j = 1 ∞ ⋂ k = j ∞ A k \overline {\lim_{k \to +\infty}} A_k=\bigcup_{j=1}^{\infty}\bigcap_{k=j}^{\infty}A_k k+limAk=j=1k=jAk为集合列 { A k } \lbrace A_k \rbrace {Ak}的上极限集,简称上限集。 lim ⁡ k → + ∞ ‾ A k = ⋂ j = 1 ∞ ⋃ k = j ∞ A k \underline {\lim_{k \to +\infty}} A_k=\bigcap_{j=1}^{\infty}\bigcup_{k=j}^{\infty}A_k k+limAk=j=1k=jAk
为集合列 { A k } \lbrace A_k \rbrace {Ak}的下极限集,简称下限集。
若上下限集相等,则说 { A k } \lbrace A_k \rbrace {Ak}的极限存在并等于上限集或下限集,记为 lim ⁡ k → + ∞ A k \lim_{k \to +\infty}A_k k+limAk
定理:若 { A k } \lbrace A_k \rbrace {Ak}是一集合列,则
(1) lim ⁡ k → + ∞ ‾ A k = { x : 对 任 一 自 然 数 j , 存 在 k ( k > = j ) , x ∈ A k } \overline {\lim_{k \to +\infty}} A_k=\lbrace x:对任一自然数j,存在k(k>=j),x \in A_k\rbrace k+limAk={x:j,k(k>=j),xAk}
(2) lim ⁡ k → + ∞ ‾ A k = { x : 存 在 自 然 数 j , 当 k ( k > = j ) , x ∈ A k } \underline {\lim_{k \to +\infty}} A_k=\lbrace x:存在自然数j,当k(k>=j), x\in A_k\rbrace k+limAk={x:j,k(k>=j),xAk}
也可以表述为
(3) lim ⁡ k → + ∞ ‾ A k = { x : x ∈ A n 对 无 穷 个 n 成 立 } \overline {\lim_{k \to +\infty}} A_k=\lbrace x:x\in A_n对无穷个n成立\rbrace k+limAk={x:xAnn}
(4) lim ⁡ k → + ∞ ‾ A k = { x : x ∈ A n 除 有 限 个 n 外 皆 成 立 } \underline {\lim_{k \to +\infty}} A_k=\lbrace x:x\in A_n除有限个n外皆成立\rbrace k+limAk={x:xAnn}

上确界是一个集合的最小上界。
下确界是与上确界相对偶的概念,指的是一个集合的最大下界。
确界存在定理:非空有上界的集合必有上确界,非空有下界的集合必有下确界。
上确界 s u p E = s u p x ∈ E x supE=sup_{x\in E}x supE=supxEx
下确界 i n f E = i n f x ∈ E x infE=inf_{x\in E}x infE=infxEx

5.聚点

E ⊂ R n , p 0 ∈ R E\subset R^n,p_0\in R ERn,p0R若对任何 δ > 0 , N ( p 0 , δ ) \delta>0,N(p_0,\delta) δ>0,N(p0,δ)内总有E中无穷多个点,则称 p 0 p_0 p0为E的聚点。
有限集无聚点。

6.导集

称E的聚点的全体为E的导集,记为E‘。

7.闭包

E ⋃ E ′ E\bigcup E' EE为E的闭包,记为 E ‾ \overline E E

8. 闭集

1.若E中每个聚点都属于E,则称E为闭集。
2.任何有限集都是闭集,有限集无聚点,故 E ′ = ∅ ⊂ E E'=\emptyset \subset E E=E
3.对于任 E ⊂ R n E\subset R^n ERn E ′ E' E E ‾ \overline E E皆为闭集。
4.E为闭集    ⟺    \iff E中任何收敛点列均收敛于E中的点。
5.闭集F的余集为开集。
6.开集的余集为闭集。
7.任意一族闭集之交仍是闭集。
8.有限个闭集之并仍是闭集。

9.自密集

E ⊂ R n E\subset R^n ERn,若 E ⊂ E ′ E\subset E' EE,则称E为自密集。
E为自密集,意为E的每一点都是他的聚点。
全体有有理数和无理数为自密集。

10.完备集

E ⊂ R n E\subset R^n ERn,若 E = E ′ E=E' E=E,则称E为完备集。
完备集是自密的闭集,不含孤立点的闭集。

11.构成空间

1.设G是直线上的非空开集,若开空间 ( a , b ) ⊂ G , 且 a , b ∉ G (a,b)\subset G,且a,b \notin G (a,b)G,a,b/G,则称(a,b)为G上的一个构成空间。
2.设G为直线上的非空开集,则G中任一点必属于某一构成区间。
3.开集的构造:直线上的任何非空开集都是至多可列个互不相交的构成区间的开集。
4.闭集的构造:直线上非空闭集是由直线除去至多可列个互不相交的开区间构成。
5.闭集构造定理中从直线上除去的各个开区间都称为闭集F的邻接区间。
6.设 F ⊂ R F \subset R FR,F为完备集的充要条件是F为任二邻接区间无公共端点的闭集。

12.点到集之间的距离

E ⊂ R n E \subset R^n ERn为非空点集, x 0 ∈ R n x_0\in R_n x0Rn,称 d ( x 0 , E ) = i n f x ∈ R d ( x 0 , x ) d(x_0,E)=inf_{x\in R}d(x_0,x) d(x0,E)=infxRd(x0,x)
为点x0集E的距离。

13.集到集之间的距离

1.设 A ⊂ R n , B ⊂ R n A\subset R^n,B \subset R^n ARnBRn皆为非空点集,称 d ( A , B ) = i n f d ( x , y ) , x ∈ A , y ∈ B d(A,B)=inf d(x,y),x\in A,y \in B d(A,B)=infd(x,y),xA,yB为集A到集B的距离。

14.距离可达定理

1.若A,B为 R n R^n Rn中非空闭集,其中至少有一个为有界集,则存在 x ∗ ∈ A , y ∗ ∈ B x^*\in A,y^*\in B xA,yB,使 d ( x ∗ , y ∗ ) = d ( A , B ) d(x^*,y^*)=d(A,B) d(x,y)=d(A,B)
2.a为 R n R^n Rn中任一点,B为 R n R^n Rn任一闭集,则必有 b ∈ B b\in B bB,使d(a,b)=d(a,B).
3.A,B为 R n R^n Rn中有界闭集,若 A ⋂ B = ∅ A\bigcap B=\empty AB=,则必有d(A,B)=r>0.

15.隔离性定理

1.两集合 A 1 A_1 A1 A 2 A_2 A2,若有开集 G 1 , G 2 G_1,G_2 G1,G2使 G 1 ⊃ A 1 , G 2 ⊃ A 2 而 G 1 ⋂ G 2 G_1\supset A_1,G_2\supset A_2而G_1\bigcap G_2 G1A1,G2A2G1G2则称 A 1 A_1 A1 A 2 A_2 A2具有隔离性.
2.设 E ⊂ R n E\subset R^n ERn,实数d>0,则集 D = { p ; d ( p , E ) < d } D=\lbrace p;d(p,E)<d \rbrace D={p;d(p,E)<d},为一开集,且 E ⊂ U E\subset U EU.
3.设A1,A2,为二非空点集,d(A1,A2)=r>0,则A1,A2必具隔离性.
4. R n R^n Rn中任二不相交之有界闭集必具隔离性.

16. 开集的长度及其主要性质

1.设G为非空开集, G = ⋃ k ( α k , β k ) , ( α k , β k ) G=\bigcup_{k}(\alpha_k,\beta_k),(\alpha_k,\beta_k) G=k(αk,βk),(αk,βk)为G的构成区间,诸 ( ( α k , β k ) ((\alpha_k,\beta_k) ((αk,βk)互不相交,规定G的长度L((G)为 L ( G ) = ∑ k ( β k − α k ) L(G)=\sum_{k}(\beta_k-\alpha_k) L(G)=k(βkαk)并规定空集的长度为0.
2.开集的长度具有单调性:设 G 1 G_1 G1, G 2 G_2 G2为有界开集, G 1 ⊂ G 2 G_1\subset G_2 G1G2,则 L ( G 1 ) ≤ L ( G 2 ) L(G_1)\leq L(G_2) L(G1)L(G2).
3.次可加性:设有界开集G是有限或可列个开集 G 1 , G 2 , . . . . . . G_1,G_2,...... G1,G2,......的并, L ( G ) ≤ ∑ k L ( G k ) L(G)\leq {\sum_{k}L(G_k)} L(G)kL(Gk).
4.完全可加性:如诸 G k G_k Gk互不相交,则 L ( G ) = ∑ k L ( G k ) L(G)={\sum_{k}L(G_k)} L(G)=kL(Gk).

17. 闭集的长度及其主要性质

1.设F为非空有界闭集,任取包含F的开区间(a,b),令G=(a,b)-F,则G为开集,定义 b − a − L ( G ) b-a-L(G) baL(G)为闭集F的长度,记为L(F).
2.设F为有界闭集,G为有界开集, F ⊂ G F\subset G FG,则 L ( G − F ) = L ( G ) − L ( F ) L(G-F)=L(G)-L(F) L(GF)=L(G)L(F)

18. 有界集的内外测度

1.设E为有界集,定义E的外测度 m ∗ E m^*E mE与内测度 m ∗ E m_*E mE m ∗ E = i n f { L ( G ) ; G ⊃ E , G 是 开 集 } m^*E=inf \lbrace L(G);G\supset E,G是开集 \rbrace mE=inf{L(G);GE,G} m ∗ E = s u p { L ( F ) ; F ⊂ E , F 是 闭 集 } m^*E=sup \lbrace L(F);F\subset E,F是闭集 \rbrace mE=sup{L(F);FE,F}
2.内外测度具有:(1)非负性 m ∗ E ≥ 0 m^*E \geq0 mE0, m ∗ E ≥ 0 m_*E\geq 0 mE0.
       (2)单调性: E 1 ⊃ E 2 , m ∗ E 1 ≥ m ∗ E 2 + m ∗ E 1 ≥ m ∗ E 2 E_1 \supset E_2,m^*E_1\geq m^*E_2+m_*E_1\geq m_*E_2 E1E2,mE1mE2+mE1mE2
       (3)次可加性: m ∗ ( ⋃ k E k ) ≤ ∑ k m ∗ E k ; m ∗ ( ⋃ k E k ) ≥ ∑ k m ∗ E k m^*(\bigcup_{k}E_k)\leq \sum_{k}m^*E_k;m_*(\bigcup_{k}E_k)\geq \sum_{k}m_*E_k m(kEk)kmEk;m(kEk)kmEk

19.测度和可测集的定义

1.设E是有界集,若 m ∗ E = m ∗ E m^*E=m_*E mE=mE,则称E为勒贝格可测集,简称可测集,可测集的外测度称为测度,记为mE.

20.可测集与开集闭集之间的关系

1. 有 界 集 E 是 可 测 集    ⟺    ∀ ε > 0 , ∃ 开 集 G 及 闭 集 F , 使 G ⊃ E ⊃ F , m ( G − F ) < ε 有界集E是可测集\iff \forall \varepsilon>0,\exists 开集G及闭集F,使G \supset E \supset F,m(G-F)<\varepsilon Eε>0,GF,使GEF,m(GF)<ε.

21. 可测集关于"并"“交”"余"运算的封闭性

1.(1)E是可测集    ⟺    E c \iff E^c Ec是可测集(设X=(a,b)).
(2)若 E 1 , E 2 E_1,E_2 E1,E2是可测集,则 E 1 ⋃ E 2 , E 1 ⋂ E 2 , E 1 − E 2 E_1\bigcup E_2,E_1\bigcap E_2,E_1-E_2 E1E2,E1E2,E1E2均为可测集.

22. 测度的单调性,可加性与连续性

1.设 E 1 , E 2 , . . . . . , E n E_1,E_2,.....,E_n E1,E2,.....,En为有限个互不相交的可测集,则 E = ⋃ k = 1 n E i E=\bigcup_{k=1}^{n}E_i E=k=1nEi为可测集,且 m E = ∑ k = 1 n m E k mE=\sum_{k=1}^{n}mE_k mE=k=1nmEk
2.(1)测度的单调性:设E1,E2是两个可测集,E1 ⊂ \subset E2,则mE1 ≤ \leq mE2.
(2)测度的完全科技与半可加性:设{ E k E_k Ek}是一列可测集,则 E = ⋃ k E k E=\bigcup_{k}E_k E=kEk是可列集且 m E ≤ ∑ k = 1 n m E k mE\leq \sum_{k=1}^{n}mE_k mEk=1nmEk若{ E k E_k Ek}为互不相交的可测集,则 m E = ∑ k = 1 n m E k mE=\sum_{k=1}^{n}mE_k mE=k=1nmEk.
3.测度的连续性:
(1)设 E 1 ⊂ E 2 ⊂ . . . . . . . . E n ⊂ . . . . . . E_1\subset E_2\subset ........E_n\subset ...... E1E2........En...... X = ( a , b ) X=(a,b) X=(a,b)中的渐张可测列,则 m ( lim ⁡ n E n ) = lim ⁡ n E n m(\lim_{n} E_n)=\lim_{n}E_n m(limnEn)=limnEn
(2)设 E 1 ⊃ E 2 ⊃ . . . . . . . . E n ⊃ . . . . . . E_1\supset E_2\supset ........E_n\supset ...... E1E2........En...... X = ( a , b ) X=(a,b) X=(a,b)中的渐缩可测列,则 m ( lim ⁡ n E n ) = lim ⁡ n E n m(\lim_{n} E_n)=\lim_{n}E_n m(limnEn)=limnEn

23.Borel集

1.若G可表示为可列个开集的交集,则称G为 G δ G_\delta Gδ集;若F可表为可列个闭集的并集,则称F为 F σ F_\sigma Fσ集.
2.设E为可测集,则
(1) ∃ G δ \exists G_\delta Gδ G ⊃ E G\supset E GE,使 m G = m E mG=mE mG=mE.
(2) ∃ F σ \exists F_\sigma Fσ G ⊂ E G\subset E GE,使 m F = m E mF=mE mF=mE.
3.E为可测集    ⟺    ∃ G δ \iff \exists G_\delta Gδ G ⊃ E G \supset E GE F σ F_\sigma Fσ F ⊂ E F \subset E FE,使 m ∗ ( G − F ) = 0 m^*(G-F)=0 m(GF)=0 m ∗ ( E − F ) = 0 m^*(E-F)=0 m(EF)=0.
4.凡可以从开集出发,经有限次或可列次取余集,并集,或交集运算而得到的点集称为Borel集,所有Borel集组成的集类称为Borel集类.

24. 可测集的卡拉德屋独利条件

1.设 E ⊂ ( a , b ) , E c = ( a , b ) − E E \subset(a,b),E^c=(a,b)-E E(a,b),Ec=(a,b)E,则有 m ∗ E + m ∗ E c = b − a m_*E+m^*E^c=b-a mE+mEc=ba
2.有界集E为可测集    ⟺    \iff 对任意集A有 m ∗ A = m ∗ ( A ∪ E ) + m ∗ ( A + E c ) m^*A=m^*(A\cup E)+m^*(A+E^c) mA=m(AE)+m(A+Ec)
3,设E是直线上任一点集,若{ l n l_n ln}是一列覆盖E的开区间,显然这样的覆盖可以很多种,记| l n l_n ln|为开区间 l n l_n ln的长度,则定义E的外测度为: m ∗ E = i n f { ∑ n = 1 ∞ ∣ l n ∣ ; ∀ ⋃ n = 1 ∞ I n ⊃ E } m^*E=inf\lbrace\sum_{n=1}^{\infty}|l_n|;\forall \bigcup_{n=1}^{\infty}I_n\supset E\rbrace mE=inf{n=1ln;n=1InE}
4.设 E ⊂ R E\subset R ER,若对任意 A ⊂ R A\subset R AR m ∗ A = m ∗ ( A ∪ E ) + m ∗ ( A + E c ) m^*A=m^*(A\cup E)+m^*(A+E^c) mA=m(AE)+m(A+Ec),则称E为勒贝格可测集,简称可测集,此时外测度 m ∗ E m^*E mE称为E的测度,记为mE.

25. 测度的补充

可测集是这样的点集,任意两个被它隔离的点集,其外测度都可加.

26.可测函数的概念

E ⊂ R n E\subset R^n ERn可测, f f f是定义于E上的广义实值函数.若对于任意实数 a a a,点集{ x ∣ x ∈ E , f ( x ) > a x|x\in E,f(x)>a xxE,f(x)>a}是 R n R^n Rn内的可测集,则 f f f称为E上的Lebesgue可测函数,简称 f f f是E上的可测函数或 f f f在E上可测.

27.可测函数的性质

1.设 f f f是可测集E上的广义实值函数,则下列命题等价:
(1)f在E上可测;
(2)对任意实数 a a a,点集 E ( f ≥ a ) E(f\geq a) E(fa)可测;
(3)对任意实数 a a a,点集 E ( f < a ) E(f<a) E(f<a)可测;
(4)对任意实数 a a a,点集 E ( f ≤ a ) E(f\leq a) E(fa)可测;

28.简单函数

若函数 φ \varphi φ定义在 E ⊂ R n E\subset R^n ERn上,只取有限个不同的值 a 1 , a 2 , . . . . , a k a_1,a_2,....,a_k a1,a2,....,ak,并且对每一个 i i i,取值 a i a_i ai的点集 E i ( x ∣ x ∈ E ∣ φ ( x ) = a i ) E_i(x|x\in E|\varphi(x)=a_i) Ei(xxEφ(x)=ai)都是可测集,则称 φ \varphi φ为E上的简单函数(这是E一定可测).当 E i E_i Ei是矩体时,称 φ \varphi φ为阶梯函数.

29.可测函数的四则运算与极限性质

1.若 f , g f,g f,g是点集E上的可测函数,则 c f ( x ) cf(x) cf(x)(c为常数), f ( x ) + g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) / g ( x ) f(x)+g(x),f(x)·g(x),f(x)/g(x) f(x)+g(x),f(x)g(x),f(x)/g(x)(假定在E上每一点,这些运算都有意义)都是E上的可测函数.

2.若{ f k f_k fk}是点集E上的可测函数列,则 lim ⁡ ‾ k → + ∞ f k ( x ) , lim ⁡ ‾ k → + ∞ f k ( x ) , s u p f k ( x ) , i n f f k ( x ) \underline {\lim}_{k \to +\infty} f_k(x),\overline {\lim}_{k \to +\infty} f_k(x),supf_k(x),inff_k(x) limk+fk(x),limk+fk(x),supfk(x),inffk(x).

3.若 f , g f,g f,g都是E上的可测函数,则 m a x ( f ( x ) , g ( x ) ) 和 m i n ( f ( x ) , g ( x ) ) max(f(x),g(x))和min(f(x),g(x)) max(f(x),g(x))min(f(x),g(x))在 E上可测.

4.若 lim ⁡ k → ∞ f k ( x ) \lim_{k \to {\infty}}f_k(x) limkfk(x)对任意 x ∈ E x\in E xE有意义,则 lim ⁡ k → ∞ f k ( x ) \lim_{k \to {\infty}}f_k(x) limkfk(x)为可测函数.

5.若 f f f是点集 E E E上的可测函数, E 0 E_0 E0是E上的可测函数, E 0 E_0 E0是E的可测子集.则 f f f在点集 E 0 E_0 E0上的限制是 E 0 E_0 E0上的可测函数.

6.设{ E k E_k Ek}为可测集列,若函数 f f f在每个点集 E k E_k Ek上可测,则 f f f在点集 E = ⋃ k = 1 ∞ E k E=\bigcup_{k=1}^{\infty}E_k E=k=1Ek上可测.

30.可测函数的逼近原理

1.若函数 f f f在E非负可测,则存在非负简单函数的递增列{ φ k \varphi_k φk}(即 0 ≤ φ k ≤ φ k + 1 , k = 1 , 2 , 3...... 0\leq \varphi_k \leq \varphi_{k+1},k=1,2,3...... 0φkφk+1,k=1,2,3......)使得 lim ⁡ k → ∞ φ k ( x ) = f ( x ) , x ∈ E \lim_{k \to {\infty}} \varphi_k(x)=f(x),x\in E klimφk(x)=f(x),xE.
2.若函数 f f f是在 E E E上的(变号的)可测函数,则存在简单函数列{ φ k \varphi_k φk},满足 ∣ φ k ∣ ≤ ∣ f ( x ) ∣ |\varphi_k|\leq |f(x)| φkf(x),且使得 lim ⁡ k → ∞ φ k ( x ) = f ( x ) , x ∈ E \lim_{k \to {\infty}} \varphi_k(x)=f(x),x\in E klimφk(x)=f(x),xE.若 f f f还是有界的,则上述收敛是一致的.
3.若 ∣ f k ∣ |f_k| fk是E上的可测函数列, lim ⁡ k → ∞ f k ( x ) = f ( x ) \lim_{k \to {\infty}}f_k(x)=f(x) klimfk(x)=f(x)a.e.于E,则函数f在E上可测.

31.Egorov定理

1.设 E ⊂ R n E\subset R^n ERn可测且 m E < ∞ mE<\infty mE<,{ f k f_k fk}是在 E E E上几乎处处有限又几乎处处收敛的可测函数列,并且它的极限函数 f f f E E E上也是几乎处处有限的,则对于任意正数 δ \delta δ,存在E的可测子集 E δ < δ E_{\delta}<\delta Eδ<δ,而在 E \ E δ E\backslash E_{\delta} E\Eδ上,{ f k f_k fk}一致收敛于 f f f.
2.设 E ⊂ R n E\subset R^n ERn可测,{ f k f_k fk}与 f f f是在 E E E上几乎处处有限的可测函数列,则{ f k f_k fk}在 A ( ⊂ E ) A(\subset E) A(E)一致收敛到 f f f的充分必要条件的存在自然数的递增列{ k l k_l kl},使得 A = ⋂ l = 1 ∞ ⋂ k = k l ∞ A k l A=\bigcap_{l=1}^{\infty}\bigcap_{k=k_l}^{\infty}A_{kl} A=l=1k=klAkl其中 A k l A_{kl} Akl是由(1)表示的集合.
2.设 E ⊂ R n E\subset R^n ERn可测且 m E < ∞ mE<\infty mE<,{ f k f_k fk}是在E上几乎处处有限又几乎处处收敛的可测函数列,并且它的极限函数 f f f E E E上也是几乎处处有限的,则对于任意正整数 l l l有, lim ⁡ l → ∞ ( ⋃ k = j ∞ B k l ) = 0 \lim_{l\to {\infty}}(\bigcup_{k=j}^{\infty}B_{kl})=0 llim(k=jBkl)=0其中 B k l = { x ∈ E ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ 1 / l } B_{kl}=\lbrace x\in E | |f_k(x)-f(x)|\geq1/l\rbrace Bkl={xEfk(x)f(x)1/l}

32.依测度收敛

1.设函数 f f f f k ( k = 1 , 2 , . . . ) f_k(k=1,2,...) fk(k=1,2,...) E ⊂ R n E\subset R_n ERn上可测且几乎处处有限.若对任意的 ε > 0 \varepsilon >0 ε>0 lim ⁡ k → ∞ m ( { x ∈ E ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ ε } ) = 0 \lim_{k \to {\infty}}m(\lbrace x\in E | |f_k(x)-f(x)|\geq \varepsilon \rbrace)=0 klimm({xEfk(x)f(x)ε})=0则称函数列{ f k f_k fk}依测度收敛于f.
2.若 f f f f k ( k = 1 , 2..... ) f_k(k=1,2.....) fk(k=1,2.....)是在E上几乎处处有限的可测函数, m E < ∞ mE<\infty mE<,并且 f k ( x ) → f ( x ) a . e . f_k(x)\to f(x)a.e. fk(x)f(x)a.e. E E E,则在 E E E上{ f k ( x ) f_k(x) fk(x)}依测度收敛于 f f f.

33. 依测度收敛的极限唯一性

1.若函数列{f_k}在点集E上同时依测度收敛到 f f f g g g,则 f f f g g g E E E对等.

34.里斯(F.Risez)定理

1.若{ f k f_k fk}在E上依测度收敛到 f f f,则必有子序列在 E E E上几乎处处收敛到 f f f.
2.假设 f f f, f k ( l k = 1 , 2.... ) f_k(lk=1,2....) fk(lk=1,2....)是在 E E E上几乎处处收敛的可测函数.若对于任意的正整数l有 lim ⁡ j → i n f t y m ( ⋃ k = j ∞ { x ∈ E ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ 1 / l } ) = 0 \lim_{j \to {infty}}m(\bigcup_{k=j}^{\infty}\lbrace x \in E| |f_k(x)-f(x)|\geq1/l\rbrace)=0 jinftylimm(k=j{xEfk(x)f(x)1/l})=0 lim ⁡ k → ∞ f k ( x ) = f ( x ) a . e . x ∈ E \lim_{k \to {\infty}}f_k(x)=f(x) a.e.x\in E klimfk(x)=f(x)a.e.xE

35. Lusin定理

1.若 f f f是在 E ⊂ R n E\subset R^n ERn是几乎处处有限的可测函数,则对于任意 ε > 0 \varepsilon>0 ε>0,存在闭集 F ⊂ E F \subset E FE,使得 f f f F F F上连续且 m ( E \ F ) < ε m(E\backslash F)<\varepsilon m(E\F)<ε.
2.若 f f f是可测集 E ⊂ R n E\subset R^n ERn上的可测函数,则对于任意正数 ε \varepsilon ε,存在 R n R^n Rn上的连续函数 g g g,使得 m { x ∈ E ∣ f ( x ) ≠ g ( x ) } < ε m\lbrace x \in E|f(x)\neq g(x)\rbrace <\varepsilon m{xEf(x)=g(x)}<ε f ( x ) f(x) f(x)还有界: ∣ f ( x ) ∣ ≤ M ( x ∈ E ) |f(x)|\leq M(x\in E) f(x)M(xE),则连续函数 g g g还可以满足 ∣ g ( x ) ∣ ≤ M ( ∀ x ∈ R n ) |g(x)|\leq M(\forall x\in R^n) g(x)M(xRn).

36.支撑集

1.设f(x)在 R n R^n Rn的某个集合E有意义,称集合 { x ∈ E ∣ f ( x ) ≠ 0 } \lbrace x\in E|f(x) \neq 0 \rbrace {xEf(x)=0}的闭包为 f f f的支(撑)集,记为supp f f f,即
s u p p f = { x ∈ E ∣ f ( x ) ≠ 0 } ‾ \rm{supp} \it{f=\overline{\lbrace x\in E |f(x)\neq 0 \rbrace}} suppf={xEf(x)=0}
f f f的的支(撑)集是 R n R^n Rn的有界闭集,则称 f f f是具有紧支集的.
2.设 f f f E ⊂ R n E\subset R^n ERn可测,E有界,则对任意 ε > 0 \varepsilon >0 ε>0,存在具有紧支集的连续函数 g g g使得 m { x ∈ E ∣ f ( x ) ≠ g ( x ) } < ε m\lbrace x \in E |f(x)\neq g(x) \rbrace<\varepsilon m{xEf(x)=g(x)}<ε

37.非负简单函数的积分

1.对于可测集 E ⊂ R n E\subset R^n ERn上的非负简单函数 φ \varphi φ,若其标准表达式为 φ ( x ) = ∑ i = 1 k c i χ E i ( x ) , ( x ∈ E = ⋃ i = 1 k E i ) \varphi(x)=\sum_{i=1}^{k}c_i\chi_{E_i}(x),(x\in E = \bigcup_{i=1}^{k}E_i) φ(x)=i=1kciχEi(x),(xE=i=1kEi)
其中 C i C_i Ci为非负实数, E i E_i Ei为可测集,当 i ≠ j i\neq j i=j时有 E i ∩ E j = ∅ E_i\cap E_j=\emptyset EiEj=,称广义实数 ∑ i = 1 k c i m E i \sum_{i=1}^{k}c_i mE_i i=1kcimEi(注意 m E i = ∞ mE_i=\infty mEi=时,适用关于 ∞ \infty 的运算约定)为 φ \varphi φ E E E上的Lebesgue积分,记为 ( L ) ∫ E φ ( x ) d x (L)\int_E\varphi(x)dx (L)Eφ(x)dx.

38.非负简单函数积分的性质

1. 0 ≤ ∫ E φ ( x ) d x ≤ ∞ 0\leq\int_E\varphi(x)dx\leq \infty 0Eφ(x)dx.
2. ∫ E c φ ( x ) d x = c ∫ E φ ( x ) d x ( c 为 非 负 实 数 ) \int_Ec\varphi(x)dx=c\int_{E}\varphi(x)dx(c为非负实数) Ecφ(x)dx=cEφ(x)dx(c).
3. ∫ E ( φ ( x ) + ψ ( x ) ) d x = ∫ E φ ( x ) d x + ∫ E ψ ( x ) d x \int_E (\varphi(x)+\psi(x))dx=\int_{E}\varphi(x)dx+\int_{E}\psi(x)dx E(φ(x)+ψ(x))dx=Eφ(x)dx+Eψ(x)dx.
4.若 E = A ∪ B , A ∩ B = ∅ , A , B ∈ M E=A\cup B,A\cap B=\emptyset,A,B\in M E=AB,AB=,A,BM ,则 ∫ E φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x \int_{E}\varphi(x)dx=\int_{A}\varphi(x)dx+\int_{B}\varphi(x)dx Eφ(x)dx=Aφ(x)dx+Bφ(x)dx
5.若 φ ( x ) ≤ ψ ( x ) ( x ∈ E ) \varphi(x)\leq \psi(x)(x \in E) φ(x)ψ(x)(xE),则 ∫ E φ ( x ) d x ≤ ∫ E ψ ( x ) d x \int_E\varphi(x)dx\leq\int_{E}\psi(x)dx Eφ(x)dxEψ(x)dx.

39.非负可测函数的积分

1.设 f f f是可测集 E ⊂ R n E\subset R^n ERn上的非负可测函数,{ φ k \varphi_k φk}是收敛于 f f f的非负简单函数的(对 k k k的)递增列,即每个 φ k \varphi_k φk E E E上的简单函数,且 0 ≤ φ 1 ( x ) ≤ φ 2 ( x ) ≤ . . . ≤ φ k ( x ) ≤ φ k + 1 ( x ) ≤ . . . ( ≤ f ( x ) ) , 0\leq \varphi_1(x)\leq\varphi_2(x)\leq...\leq\varphi_k(x)\leq\varphi_{k+1}(x)\leq...(\leq f(x)), 0φ1(x)φ2(x)...φk(x)φk+1(x)...(f(x)), lim ⁡ k → ∞ φ k ( x ) = f ( x ) , ( x ∈ E ) , \lim_{k \to \infty}\varphi_k(x)=f(x),(x\in E), klimφk(x)=f(x),(xE),则称极限 lim ⁡ k → ∞ ∫ E f ( x ) d x \lim_{k \to \infty }\int_Ef(x)dx klimEf(x)dx(有限实数或 + ∞ +\infty +)为函数 f f f E E E上的Lebesgue积分,记为 ∫ E f ( x ) d x \int_Ef(x)dx Ef(x)dx(或在积分号前加 ( L ) (L) (L)).
2.设 φ \varphi φ和所有 ψ k ( k = 1 , 2 , . . . . ) \psi_k(k=1,2,....) ψk(k=1,2,....)都是可测集 E ⊂ R n E\subset R^n ERn上的非负简单函数,并且当 x ∈ E x\in E xE时, ψ k ( x ) ≤ ψ k + 1 ( k = 1 , 2 , . . . ) , \psi_k(x)\leq\psi_{k+1}(k=1,2,...), ψk(x)ψk+1(k=1,2,...), φ ( x ) ≤ lim ⁡ k → ∞ ψ k ( x ) , \varphi(x)\leq\lim_{k \to \infty}\psi_k(x), φ(x)klimψk(x),则有 ∫ E φ ( x ) d x ≤ lim ⁡ k → ∞ ∫ E ψ k ( x ) d x \int_E\varphi (x)dx\leq\lim_{k \to \infty}\int_E\psi_k(x)dx Eφ(x)dxklimEψk(x)dx

40.非负可测函数积分的性质

1. 0 ≤ ∫ E f ( x ) d x ≤ ∞ 0\leq\int_Ef(x)dx\leq \infty 0Ef(x)dx.
2. ∫ E c f ( x ) d x = c ∫ E f ( x ) d x ( c 为 非 负 实 数 ) \int_Ecf(x)dx=c\int_{E}f(x)dx(c为非负实数) Ecf(x)dx=cEf(x)dx(c).
3. ∫ E ( f ( x ) + g ( x ) ) d x = ∫ E f ( x ) d x + ∫ E g ( x ) d x \int_E (f(x)+g(x))dx=\int_{E}f(x)dx+\int_{E}g(x)dx E(f(x)+g(x))dx=Ef(x)dx+Eg(x)dx.
4.若 E = E 1 ∪ E 2 , E 1 ∩ E 2 = ∅ , E 1 , E 2 可 测 E=E_1\cup E_2,E_1\cap E_2=\emptyset,E_1,E_2可测 E=E1E2,E1E2=,E1,E2 ,则 ∫ E f ( x ) d x = ∫ E 1 f ( x ) d x + ∫ E 2 f ( x ) d x \int_{E}f(x)dx=\int_{E_1}f(x)dx+\int_{E_2}f(x)dx Ef(x)dx=E1f(x)dx+E2f(x)dx
5.若 0 ≤ f ( x ) ≤ g ( x ) ( x ∈ E ) 0\leq f(x)\leq g(x)(x \in E) 0f(x)g(x)(xE),则 ∫ E f ( x ) d x ≤ ∫ E g ( x ) d x \int_Ef(x)dx\leq\int_{E}g(x)dx Ef(x)dxEg(x)dx.

41.切比雪夫不等式

1.若 0 ≤ A ≤ f ( x ) ≤ B , ( x ∈ E , A , B 为 常 数 ) 0\leq A\leq f(x)\leq B,(x\in E,A,B为常数) 0Af(x)B,(xE,A,B),则 A m E ≤ ∫ E f ( x ) ≤ B m E AmE\leq \int_{E}f(x)\leq BmE AmEEf(x)BmE
2.若 a a a为正的常数,则 m E ( f ≥ a ) ≤ 1 / a ∫ E f ( x ) d x mE(f\geq a)\leq1/a \int_Ef(x)dx mE(fa)1/aEf(x)dx此式通常称为切比雪夫不等式.

42. ∫ E f d x \int_E fdx Efdx=0的充分必要条件

1. ∫ E f ( x ) d x \int_E f(x)dx Ef(x)dx=0的充分必要条件是 f ( x ) f(x) f(x)在E上几乎处处等于0,即 f f f~0与 E E E.
2.若 ∫ E f ( x ) d x ≤ ∞ \int_E f(x)dx\leq \infty Ef(x)dx,则 f ( x ) f(x) f(x)在E上几乎处处有限.

43. f ∈ L ( E ) f\in L(E) fL(E)的充分必要条件

1.设 f ( x ) f(x) f(x)是在 E E E上几乎处处有限的非负可测函数, m ( E ) < + ∞ m(E)<+ \infty m(E)<+,对 [ 0 , + ∞ ) [0,+\infty) [0,+)作如下分法: 0 = y 0 < y 1 < y 2 < . . . y k < y k + 1 < . . . , 0=y_0<y_1<y_2<...y_k<y_{k+1}<..., 0=y0<y1<y2<...yk<yk+1<...,其中 y k + 1 − y k < δ ( k = 0 , 1... ) y_{k+1}-y_k<\delta(k=0,1...) yk+1yk<δ(k=0,1...).令 E k = { x ∈ E ∣ y k ≤ f ( x ) < y k + 1 } , E_k=\lbrace x\in E |y_k\leq f(x)<y_{k+1}\rbrace, Ek={xEykf(x)<yk+1}, f ∈ L ( E ) f\in L(E) fL(E)(积分值为有限)的充分必要条件是 ∑ k = 0 ∞ y k m ( E k ) < + ∞ \sum_{k=0}^{\infty}y_km(E_k)<+\infty k=0ykm(Ek)<+,并且 ∫ E f ( x ) d x = lim ⁡ δ → ∞ ∑ k = 0 ∞ y k m ( E k ) \int_{E}f(x)dx=\lim_{\delta \to \infty} \sum_{k=0}^{\infty}y_km(E_k) Ef(x)dx=δlimk=0ykm(Ek)

44.一般可测函数的积分

1.设 f f f是定义于 E ⊂ R n E\subset R^n ERn上的可测函数,若 f f f的正部 f + f^+ f+与负部 f − f^- f E E E上的积分不同时为 ∞ \infty ,则定义 f f f E E E上的Lebesgue积分为 ∫ E f ( x ) d x = ∫ E f + ( x ) d x − ∫ f − ( x ) d x . \int_{E}f(x)dx=\int_{E}f^+(x)dx-\int f^-(x)dx. Ef(x)dx=Ef+(x)dxf(x)dx.若这个积分取有限值(以后简称L可积或可积).在 E E E上可积函数全体(集合)记为 L ( E ) L(E) L(E),或简记为 L L L.

45.可测函数可积的充要条件

1.可测函数 f f f E ⊂ R n E\subset R^n ERn上可积的充分必要条件是,它的绝对值函数 ∣ f ∣ |f| f E E E上可积.

46.控制函数

1.设 f f f E ⊂ R n E\subset R^n ERn上可测,若存在非负函数 F ∈ L ( E ) F\in L(E) FL(E),使得 ∣ f ( x ) ∣ ≤ F ( x ) |f(x)|\leq F(x) f(x)F(x)(这时称 F F F f f f的控制函数),则 f ∈ L ( E ) f\in L(E) fL(E).

47.可测函数积分的性质

1.若 f ∈ L ( E ) f\in L(E) fL(E),则 ∣ f ( x ) ∣ < ∞ a . e . 于 E . |f(x)|<\infty a.e.于E. f(x)<a.e.E.
2.若 f f f是零测集 E E E上的任意广义实值函数,则 ∫ E f ( x ) d x = 0 \int_E f(x)dx=0 Ef(x)dx=0,从而 f ∈ L ( E ) f\in L(E) fL(E)
3.若 f f f g g g都是 E ⊂ R n E\subset R^n ERn上的可测函数,且 f f f~ g g g于E,则 f f f g g g在E上同时可积,或者同时不可积,并且在积时,他们的积分值相等.
4.若 f ∈ L ( E ) , g ∈ L ( E ) , a , b 是 常 数 f\in L(E),g\in L(E),a,b是常数 fL(E),gL(E),a,b,则 a f + b g ∈ L ( E ) af+bg\in L(E) af+bgL(E) ∫ E ( a f ( x ) + b g ( x ) ) d x = a ∫ E f ( x ) d x + b ∫ E g ( x ) x d x \int_{E}(af(x)+bg(x))dx=a\int_{E}f(x)dx+b\int_{E}g(x)xdx E(af(x)+bg(x))dx=aEf(x)dx+bEg(x)xdx
5.若有 f ∈ L ( E 1 ) , f ∈ L ( E 2 ) , 且 E 1 ∩ E 2 = ∅ , 则 f ∈ L ( E 1 ∪ E 2 ) f\in L(E_1),f\in L(E_2),且E_1\cap E_2=\emptyset,则f\in L(E_1\cup E_2) fL(E1),fL(E2),E1E2=,fL(E1E2) ∫ E 1 ∪ E 2 f ( x ) d x = ∫ E 1 f ( x ) d x + ∫ E 2 f ( x ) d x \int_{E_1\cup E_2}f(x)dx=\int_{E_1}f(x)dx+\int_{E_2}f(x)dx E1E2f(x)dx=E1f(x)dx+E2f(x)dx
6. f ∈ L ( E ) , E 0 ⊂ E , E 0 f\in L(E),E_0\subset E,E_0 fL(E),E0E,E0可测,则 f ∈ L ( E 0 ) f\in L(E_0) fL(E0) ∫ E \ E 0 f ( x ) d x = ∫ E f ( x ) d x − ∫ E 0 f ( x ) d x \int_{E \backslash E_0}f(x)dx=\int_{E}f(x)dx-\int_{E_0}f(x)dx E\E0f(x)dx=Ef(x)dxE0f(x)dx
7.设 f ∈ L ( E ) , g ∈ L ( E ) f\in L(E),g\in L(E) fL(E),gL(E).若 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x)a.e.于 E E E,则 ∫ E f ( x ) d x ≤ ∫ E g ( x ) d x \int_Ef(x)dx\leq \int_Eg(x)dx Ef(x)dxEg(x)dx
8.若 f ∈ L ( E ) f\in L(E) fL(E),则 ∣ ∫ E f ( x ) d x ∣ ≤ ∫ E ∣ f ( x ) ∣ d x |\int_Ef(x)dx|\leq \int_E|f(x)|dx Ef(x)dxEf(x)dx

48.积分的绝对连续性

f ∈ L ( E ) f\in L(E) fL(E),则对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,使得对 E E E的任意可测子集 E 0 E_0 E0,只要满足 m E 0 < δ mE_0<\delta mE0<δ,就有 ∫ E 0 ∣ f ( x ) ∣ d x < ε \int_{E0}|f(x)|dx<\varepsilon E0f(x)dx<ε.

49.列维(Levi)定理(单调收敛定理)

设{ f k f_k fk}是E上的非负可测函数的递增列,记 f ( x ) = lim ⁡ k → ∞ f k ( x ) ( x ∈ E ) , f(x)=\lim_{k\to \infty}f_k(x)(x\in E), f(x)=klimfk(x)(xE), ∫ E f ( x ) d x = lim ⁡ k → ∞ ∫ E f k ( x ) d x . \int_Ef(x)dx=\lim_{k \to \infty}\int_Ef_k(x)dx. Ef(x)dx=klimEfk(x)dx.

50.Lebesgue逐项积分定理

设{ f k f_k fk}是E上的非负可测函数列.令 f ( x ) = ∑ k = 1 ∞ f k ( x ) ( x ∈ E ) , f(x)=\sum_{k=1}^{\infty}f_k(x)(x\in E), f(x)=k=1fk(x)(xE), ∑ k = 1 ∞ f k ( x ) d x \sum_{k=1}^{\infty}f_k(x)dx k=1fk(x)dx逐项可积分,即 ∫ E f ( x ) d x = ∫ E ∑ k = 1 ∞ f k ( x ) d x . \int_Ef(x)dx=\int_E \sum_{k=1}^{\infty}f_k(x)dx. Ef(x)dx=Ek=1fk(x)dx.

51.法图(Fatou)引理

设{ f k f_k fk}是E上的非负可测函数列,则…
在这里插入图片描述

52.Lebesgue控制收敛定理

设{ f k f_k fk}是 E ∈ R n E\in R^n ERn上几乎处处收敛的可测函数列, lim ⁡ k → ∞ f k ( x ) = f ( x ) . \lim_{k \to \infty}f_k(x)=f(x). limkfk(x)=f(x).若存在非负函数 F F F,使得 F ∈ L ( F ) F\in L(F) FL(F)并且 ∣ f k ( x ) ∣ ≤ F ( x ) ( x ∈ E , k = 1 , 2... ) |f_k(x)|\leq F(x) (x\in E,k=1,2...) fk(x)F(x)(xE,k=1,2...),则函数 f f f及所有的 f k f_k fk都在E上可积,且 lim ⁡ k → ∞ f k ( x ) d x 存 在 并 等 于 ∫ E f ( x ) d x . \lim_{k\to \infty}f_k(x)dx存在并等于\int_Ef(x)dx. klimfk(x)dxEf(x)dx.

53.有界收敛定理

m E < ∞ mE<\infty mE<,{ f k f_k fk}是在 E E E上几乎处处收敛的可测函数列, lim ⁡ k → ∞ f k ( x ) = f ( x ) ( a . e . x ∈ E ) , \lim_{k\to \infty}f_k(x)=f(x)(a.e. x\in E), klimfk(x)=f(x)(a.e.xE),并且存在着常数 M > 0 M>0 M>0,使得 ∣ f k ( x ) < M ∣ ( x ∈ E , k = 1 , 2 , . . . . ) , |f_k(x)<M|(x\in E,k=1,2,....), fk(x)<M(xE,k=1,2,....), lim ⁡ k → ∞ ∫ E f k ( x ) d x = ∫ E f ( x ) d x . \lim_{k \to \infty}\int_Ef_k(x)dx=\int_Ef(x)dx. klimEfk(x)dx=Ef(x)dx.

54.勒贝格积分与黎曼积分的比较

1.若函数 f f f [ a , b ] [a,b] [a,b] ( R ) (R) (R)可积,则 f ∈ L ( a , b ) , 并 且 f \in L(a,b),并且 fL(a,b),, ( R ) ∫ a b f ( x ) d x = ( L ) ∫ a b f ( x ) d x . (R)\int_{a}^{b}f(x)dx=(L)\int_a^b f(x)dx. (R)abf(x)dx=(L)abf(x)dx.
2.设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有界,则f在 [ a , b ] [a,b] [a,b] R i e m a n n Riemann Riemann可积的充分必要条件是, f f f [ a , b ] [a,b] [a,b]上的间断点组成零测集.
3.若定义在 R R R上的函数 f f f在任何有限区间上有界,且它在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上的反常 R i e m a n n Riemann Riemann积分绝对收敛(蕴含 f f f在任何有限区间 R R R可积),则 f ∈ L ( − ∞ , + ∞ ) f\in L(-\infty,+\infty) fL(,+)并且 ( L ) ∫ − ∞ + ∞ f ( x ) d x = ( R ) ∫ − ∞ + ∞ f ( x ) d x (L)\int_{-\infty}^{+\infty}f(x)dx=(R)\int_{-\infty}^{+\infty}f(x)dx (L)+f(x)dx=(R)+f(x)dx

  • 15
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值