求和为N的所有子集

给定一个按大下排列好的数列,如A[8]={1,2,3,4,5,8,10,12}; 任意给定一个整数N(比如N=14),求出和为N的所有子集。

思路:递归求解,化解为小问题;用栈保存所有和为N的各个项。

 

#include<iostream>
#include<stack>
using namespace std;
int A[8]={1,2,3,4,5,8,10,12};
stack<int> S;
void makeSum(int index,int sum){

	for(int i=index;i>=0;i--){
		S.push(A[i]);//当前元素入栈
		int remainder=sum-A[i];//计算下一个元素
		if(remainder==0){//满足条件,输出栈中的所有元素
			stack<int> temp=S;
			while(!temp.empty()){
				cout<<temp.top()<<" ";
				temp.pop();
			}
			cout<<endl;
			S.pop();//出栈
			continue;
		}
		if(i==0){//计算到末尾,返回
			S.pop();
			return;
		}

		int j=0;
		if(A[j]>remainder){
			S.pop();
			continue;
		}

		while(j<=i-1){ // 找到不大于remainder的第一个数,可改进为 二分查找
			if(A[j]>=remainder)
				break;
			j++;
		}
		if(A[j]>remainder || j>i-1)
			j--;
		makeSum(j,remainder);//递归求解
		S.pop();
	}	
}

void main(){
	makeSum(7,14);
}


 注意到,每次递归中,都要遍历所有元素,其实是没必要的,

比如,在第一层递归中,sum=14,就没必要遍历 i=4,3,2,1的元素,因为,其和不可能等于14,所以我们可以用一个辅助数组保存前N项和,在遍历时判断是否还需要继续遍历

需要花费O(n)的空间;

改动后如下所示:

int A[8]={1,2,3,4,5,8,10,12};
int Sum[8]={0};
stack<int> S;
void makeSum(int index,int sum){

	for(int i=index;i>=0 && sum<=Sum[i];i--){
		S.push(A[i]);//当前元素入栈
		int remainder=sum-A[i];//计算下一个元素
		if(remainder==0){//满足条件,输出栈中的所有元素
			stack<int> temp=S;
			while(!temp.empty()){
				cout<<temp.top()<<" ";
				temp.pop();
			}
			cout<<endl;
			S.pop();//出栈
			continue;
		}
		if(i==0){//计算到末尾,返回
			S.pop();
			return;
		}

		int j=0;
		if(A[j]>remainder){
			S.pop();
			continue;
		}

		while(j<=i-1){ // 可改进为 二分查找
			if(A[j]>=remainder)
				break;
			j++;
		}
		if(A[j]>remainder || j>i-1)
			j--;
		makeSum(j,remainder);//递归求解
		S.pop();
	}	
}

void main(){
	Sum[0]=A[0];// Sum 用来计算前n项和,减少没必要的计算,但需要花费O(n)的空间
	for(int i=1;i<8;i++){
		Sum[i]=A[i]+Sum[i-1];
	}
	makeSum(7,14);
}

 

 

=================2013-6-20============================

再看自己的算法,发现上述过程还是麻烦,没有领悟递归的真正写法,应力求简单明了

//下面算法中的index 与上述两个算法中的index 表示意思不同,上面的表示索引下标。

int A[8]={1,2,3,4,5,8,10,12};
int Sum[8]={0};
stack<int> S;
//index 表示元素个数
//sum 表示要求的和
void makeSum(int index,int sum){

	if(sum==0){//满足条件,输出栈中的所有元素
		stack<int> temp=S;
		while(!temp.empty()){
			cout<<temp.top()<<" ";
			temp.pop();
		}
		cout<<endl;
		return;
	}
	for(int i=index-1;i>=0 && sum<=Sum[i];i--){
		if(A[i]<=sum){
			S.push(A[i]);//当前元素入栈
			makeSum(i,sum-A[i]);
			S.pop();
		}
	}		
}

void main(){
	Sum[0]=A[0];// Sum 用来计算前n项和,减少没必要的计算,但需要花费O(n)的空间
	for(int i=1;i<8;i++){
		Sum[i]=A[i]+Sum[i-1];
	}
	makeSum(8,14);
}



 


 

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
子集求和问题是一个经典的组合优化问题,其目标是在给定的正整数集合中,找到一个子集,使得该子集中元素的和等于给定的目标数值。下面是使用动态规划算法实现子集求和问题的步骤: 1. 定义状态:设 $dp(i,j)$ 表示在前 $i$ 个正整数中,是否存在一个子集,使得其元素和等于 $j$。 2. 初始化状态:$dp(0,0)=1$,即前 $0$ 个正整数中,存在一个子集,其元素和为 $0$。 3. 状态转移方程:对于第 $i$ 个正整数 $num_i$,存在两种情况: a. 不选 $num_i$,则 $dp(i,j)=dp(i-1,j)$; b. 选 $num_i$,则 $dp(i,j)=dp(i-1,j-num_i)$; 综上所述,状态转移方程为:$dp(i,j)=dp(i-1,j)\text{ or }dp(i-1,j-num_i)$。 4. 最终状态:$dp(n,sum)$,其中 $n$ 表示正整数的个数,$sum$ 表示目标数值。 5. 时间和空间复杂度:时间复杂度为 $O(n\times sum)$,空间复杂度为 $O(n\times sum)$。 下面是使用动态规划算法实现子集求和问题的 Python 代码实现: ```python def subset_sum(nums, target): n = len(nums) dp = [[False for j in range(target+1)] for i in range(n+1)] for i in range(n+1): dp[i][0] = True for i in range(1, n+1): for j in range(1, target+1): dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i-1]] return dp[n][target] ``` 其中,参数 `nums` 表示正整数集合,参数 `target` 表示目标数值。函数返回值为布尔类型,表示是否存在一个子集,使得其元素和等于目标数值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值