【资源分享】今日学习打卡--朴素贝叶斯法 (naive bayes classifier)

今日学习打卡,是一个非常简单的模型,朴素贝叶斯法(naive bayes classifier)

总得来说就是贝叶斯 + naive

通过,贝叶斯来计算事件发生概率:

然后,naive就是假设各个因素之间相互独立,互不影响。

在现实生活中,因素经常是有内在联系的。如:是否今天下雨,考虑因素有:气压,湿度,温度。实际上这些因素是有内在联系的,但是模型中假设它们相互独立,所以称为naive。这样,在计算中相当简单,且往往预测结果还算不错的。

 

链接:

https://pan.baidu.com/s/14HRsY341zzhfXSVWrdAGXg

 

转载于:https://www.cnblogs.com/zhoujianjie1988/p/11261476.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值