Python机器学习分类算法(一)-- 朴素贝叶斯分类(Naive Bayes Classifier)

简要描述

        朴素贝叶斯分类器(Naive Bayes Classifier)是一种基于贝叶斯定理与特征条件独立假设的分类方法。它之所以被称为“朴素”,是因为它假设输入特征(在特征向量中)是独立的,即一个特征的出现不依赖于其他特征的出现。这个假设在实际应用中通常不成立,但在很多情况下,朴素贝叶斯分类器仍然可以取得很好的效果。

工作原理

贝叶斯定理

        给定一个类别 (y) 和一个特征向量 (x_1, x_2, ..., x_n),贝叶斯定理表示条件概率 (P(y|x_1, x_2, ..., x_n)) 可以通过以下方式计算:

                [ P(y|x_1, x_2, ..., x_n) = \frac{P(y)P(x_1, x_2, ..., x_n|y)}{P(x_1, x_2, ..., x_n)} ]

其中:

  • (P(y)) 是类别 (y) 的先验概率。
  • (P(x_1, x_2, ..., x_n|y)) 是给定类别 (y) 下特征向量 (x_1, x_2, ..., x_n) 的条件概率。
  • (P(x_1, x_2, ..., x_n)) 是特征向量的先验概率,通常被视为常数,因为给定数据集中的样本都已经被观测到。

朴素贝叶斯的假设

        朴素贝叶斯假设特征之间是条件独立的,即:

                   [ P(x_1, x_2, ..., x_n|y) = P(x_1|y)P(x_2|y) \cdots P(x_n|y) ]

        这个假设大大简化了计算,因为我们可以单独计算每个特征的条件概率,而不需要考虑特征之间的组合。

分类

        对于一个新的样本,朴素贝叶斯分类器会计算它属于每个类别的后验概率 (P(y|x_1, x_2, ..., x_n)),然后选择后验概率最大的类别作为预测类别。

使用场景及优缺点

适用情形

  • 文本分类,如垃圾邮件过滤、情感分析。
  • 适用于特征间相关性较小的情况。

优点

  • 所需估计的参数少,只需计算每个特征在每个类别下的概率。
  • 对缺失数据不敏感,因为它仅使用出现的特征进行预测。
  • 计算速度快,因为假设特征独立,可以简化计算。

缺点

  • 假设特征间相互独立,这在现实中往往不成立,可能导致分类效果下降。
  • 对于特征间存在较强相关性的数据集,分类效果可能不佳。

代码示例

        这里以鸢尾花数据集为例,直接使用Python的scikit-learn库,简单的代码如下,如果要使用此方法,可以自行调整参数:

from sklearn.naive_bayes import GaussianNB  
from sklearn.model_selection import train_test_split  
from sklearn.datasets import load_iris  
  
# 加载数据  
iris = load_iris()  
X, y = iris.data, iris.target  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 创建模型  
gnb = GaussianNB()  
  
# 训练模型  
gnb.fit(X_train, y_train)  
  
# 预测  
y_pred = gnb.predict(X_test)

 

 

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值