【转载】使用Pandas进行数据匹配

本文详细介绍了使用Pandas进行数据匹配的方法,包括merge函数的使用、inner、left、right和outer四种模式的匹配原理,并通过实例展示了每种模式的拼接结果,帮助理解数据拼接过程中的NaN值处理。
摘要由CSDN通过智能技术生成

使用Pandas进行数据匹配

本文转载自:蓝鲸的网站分析笔记

原文链接:使用Pandas进行数据匹配

 

目录

 

Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能。与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式。 其中inner为默认的匹配模式。本篇文章我们将介绍merge函数的使用方法和4种拼接模式的区别。

managed-services-mergers

下面是我们准备进行拼接的两个数据表,左边是贷款状态表loan_stats,右边为用户等级表member_grade。我们将分别用merge函数的4种匹配模式对这两个表进行拼接。

row_data

准备工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值