一招搞定线性代数

线性代数知识点总结

目录

线性代数知识点总结

 

 

1 行列式

(一)行列式概念和性质

(二)重要行列式

(三)按行(列)展开

(四)行列式公式

2 矩阵

(一)矩阵的运算

(二)矩阵的逆

(三)矩阵的初等变换

★(四)矩阵的秩

(五)伴随矩阵

3 向量

(一)向量的概念及运算

 (二)线性组合和线性表示

(三)线性相关和线性无关

(四)极大线性无关组与向量组的秩

(五)向量空间

(六) Schmidt正交化

4 线性方程组

(一)方程组的表达形与解向量

(二)解的判定与性质

(三)基础解系

(四)解的结构(通解)

(五)公共解与同解

5 特征值与特征向量

(一)矩阵的特征值与特征向量

 (二)相似矩阵

(三)矩阵的相似对角化

(四)实对称矩阵

 6 二次型

(一)二次型及其标准形

(二)惯性定理及规范形

(三)合同矩阵

(四)正定二次型与正定矩阵


 


1 行列式

(一)行列式概念和性质

1、逆序数: 所有的逆序的总数

2、行列式定义: 不同行不同列元素乘积代数和

3、行列式性质:(用于化简行列式)

( 1)行列互换(转置) ,行列式的值不变

( 2)两行(列)互换,行列式变号

( 3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数 k乘此行列式

( 4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

( 5)一行(列)乘 k 加到另一行(列),行列式的值不变。

( 6)两行成比例,行列式的值为0。

(二)重要行列式

4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积

5、副对角线行列式的值 等于副对角线元素的乘积乘

6、Laplace展开式:(A 是 m 阶矩阵, B 是 n 阶矩阵),则
 


7、n 阶( n≥2)范德蒙德行列式

 

数学归纳法证明

★ 8、对角线的元素为 a,其余元素为 b 的行列式的值:

(三)按行(列)展开

9、按行展开定理:

( 1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值

( 2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于 0

(四)行列式公式

10、行列式七大公式:


( 6)若 A 的特征值 λ1、 λ2、…… λn ,则

(7 )若 A 与 B 相似,则 |A|=|B|

(五)克莱姆法则

11、克莱姆法则:

( 1 )非齐次线性方程组的系数行列式不为0,那么方程为唯 一解

( 2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0
( 3)若齐次线性方程组的系数行列式不为0 , 则齐次线性方程组只有0 解;如方程组有非零解,那么必有D=0。


2 矩阵

(一)矩阵的运算

1、矩阵乘法注意事项:

( 1)矩阵乘法要求前列后行一致;

( 2)矩阵乘法不满足交换律;

( 3) AB=O不能推出 A=O 或 B=O。

2、转置的性质( 5 条)

(二)矩阵的逆

3、逆的定义:
AB=I或 BA=I成立,称 A 可逆, B 是 A 的逆矩阵,记为 B=A^-1

注: A 可逆的充要条件是 |A| ≠ 0

4、逆的性质:( 5 条)


5、逆的求法:

( 1) A 为抽象矩阵:由定义或性质求解

定义AA^-^1=I或者A^-^1A=I
( 2) A 为数字矩阵:(A|I)→初等行变换 →( I|A^-1 )

(三)矩阵的初等变换

6、初等行(列)变换定义:

( 1)两行(列)互换;
( 2)一行(列)乘非零常数c
( 3)一行(列)乘 k 加到另一行(列)

7、初等矩阵: 单位矩阵 I 经过一次初等变换得到的矩阵。

8、初等变换与初等矩阵的性质:

( 1)初等行(列)变换相当于左(右)乘相应的初等矩阵
( 2)初等矩阵均为可逆矩阵


★(四)矩阵的秩

9、秩的定义: 非零子式的最高阶数

注:( 1) r(A)=0 意味着所有元素为 0,即 A=O


( 2) r(An ×n)=n(满秩) ←→ |A| ≠0 ←→A 可逆;


r( A)< n←→|A|=0 ←→A 不可逆;


( 3) r(A)=r (r=1、2、…、 n-1) ←→r 阶子式非零且所有 r+1 子式均为 0。


10、秩的性质:(7 条)

( 1) A 为 m × n 阶矩阵,则 r(A)≤ min (m,n)

( 2) r(A±B)≤ r ( A)±( B)

( 3) r(AB)≤ min{r ( A),r (B)}

( 4) r(kA)=r(A)(k≠0)

( 5) r(A)=r (AC)(C 是一个可逆矩阵)

( 7)设 A 是 m×n 阶矩阵, B 是 n×s 矩阵, AB=O,则 r ( A) +r(B)≤ n

 
11、秩的求法:

( 1) A 为抽象矩阵:由定义或性质求解;
( 2) A 为数字矩阵: A→初等行变换 →阶梯型(每行第一个非零元素下面的元素均为 0),则 r(A)=非零行的行数

(五)伴随矩阵

12、伴随矩阵的性质: (8 条)


(六)分块矩阵

13、分块矩阵的乘法: 要求前列后行分法相同。

14、分块矩阵求逆:

3 向量

(一)向量的概念及运算

1、向量的内积:
2、长度定义:
 
3、正交定义:
4、正交矩阵的定义:

 
(二)线性组合和线性表示

5、线性表示的充要条件:

非零列向量 β可由 α1,α2,…, αs 线性表示

★(2)←→r (α1 ,α2,…, αs) =r(α 1, α 2,…, αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)

6、线性表示的充分条件:(了解即可)

若 α1,α2,…,αs 线性无关, α 1,α 2,…,αs,β线性相关,则 β可由 α1,α 2,…, αs 线性表示

7、线性表示的求法: (大题第二步)

设 α1, α2,…, α s 线性无关, β可由其线性表示。
( α1, α2,…, α s| β)→初等行变换 →(行最简形 | 系数)
行最简形:每行第一个非0 的数为 1,其余元素均为 0

(三)线性相关和线性无关

8、线性相关注意事项:
( 1) α线性相关 ←→α =0
( 2) α1, α2 线性相关 ←→α1,α2 成比例
9、线性相关的充要条件:

向量组 α 1,α 2,…, αs 线性相关
( 1) ←→有个向量可由其余向量线性表示;
( 2) ←→齐次方程( α 1,α 2,…, αs)( x1 ,x2,…, xs)^T =0 有非零解;
★( 3) ←→r( α1, α2,…, α s)< s 即秩小于个数

特别地, n 个 n 维列向量 α 1, α2,…, αn 线性相关
( 1) ←→ r(α1,α2,…, αn)< n
( 2) ←→| α 1, α2,…, αn |=0
( 3) ←→(α1,α 2,…, αn)不可逆
10、线性相关的充分条件:

( 1)向量组含有零向量或成比例的向量必相关

( 2)部分相关,则整体相关

( 3)高维相关,则低维相关

( 4)以少表多,多必相关
★推论: n+1 个 n 维向量一定线性相关


11、线性无关的充要条件

向量组 α 1,α 2,…, αs 线性无关
( 1) ←→任意向量均不能由其余向量线性表示;
( 2) ←→齐次方程( α 1,α 2,…, αs)( x1 ,x2,…, xs)^T=0 只有零解
( 3) ←→r( α1, α2,…, α s)=s

特别地, n 个 n 维向量 α1,α 2,…, αn 线性无关
←→r (α 1,α 2,…, αn)=n
←→| α 1,α 2,…, αn | ≠0
←→矩阵可逆
12、线性无关的充分条件:

( 1)整体无关,部分无关

( 2)低维无关,高维无关

( 3)正交的非零向量组线性无关

( 4)不同特征值的特征向量无关

13、线性相关、线性无关判定

( 1)定义法
★( 2)秩:若小于阶数,线性相关;若等于阶数,线性无关

【专业知识补充】
( 1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。

( 2)若 n 维列向量 α 1,α2 ,α3 线性无关, β1,β2,β 3 可以由其线性表示,
即( β1,β2,β3)=(α1,α2,α 3)C,则 r ( β1,β2,β3)=r(C),从而线性无关。

←→r (β 1,β 2,β 3) =3 ←→ r (C)=3 ←→ |C| ≠0

(四)极大线性无关组与向量组的秩

14、极大线性无关组不唯一

15、向量组的秩 :极大无关组中向量的个数成为向量组的秩

对比:矩阵的秩 :非零子式的最高阶数
★注 :向量组 α1,α2 ,…, αs 的秩与矩阵 A=( α1, α2 ,…, α s)的秩相等
★16、极大线性无关组的求法

( 1) α1, α2,…, α s 为抽象的:定义法

( 2) α1, α2,…, α s 为数字的:( α1, α2,…, α s)→初等行变换 →阶梯型矩阵

则每行第一个非零的数对应的列向量构成极大无关组

(五)向量空间

17、基(就是极大线性无关组)变换公式:

若 α1, α2,…, α n 与β1,β2,…, βn 是 n 维向量空间 V 的两组基,则基

变换公式为( β 1,β 2,…, βn)=(α1,α2,…, αn )Cn ×n

其中, C 是从基 α 1,α 2,…, αn 到 β1, β2,…, β n 的过渡矩阵。


18、坐标变换公式:

向量 γ在基 α1,α2,…,α n 与基 β1,β2,…,β n 的坐标分别为

x=(x1,x2,…,xn)^T ,y=( y1,y2,…, yn) ^T

(六) Schmidt正交化

19、Schmidt 正交化

设 α1, α2, α3 线性无关

( 1)正交化

令 β1=α1

 
( 2)单位化

4 线性方程组

(一)方程组的表达形与解向量

1、解的形式:

(1)一般形式

(2)矩阵形式: Ax=b;

(3)向量形式: A=(α1,α2,…, αn )

2、解的定义:
若 η=( c1,c2,…,cn)^T 满足方程组 Ax=b,即 Aη=b,称η是 Ax=b 的一个解 (向量)

(二)解的判定与性质

3、齐次方程组:
( 1)只有零解 ←→r (A)=n( n 为 A 的列数或是未知数 x 的个数)
( 2)有非零解 ←→r (A)< n
4、非齐次方程组:
( 1)无解 ←→r (A)< r (A|b ) ←→r( A)=r(A)-1
( 2)唯一解 ←→r( A) =r(A|b )=n
( 3)无穷多解 ←→r (A)=r(A|b )< n
5、解的性质:

( 1)若 ξ1,ξ2 是 Ax=0 的解,则 k1ξ1+k2ξ2 是 Ax=0 的解

( 2)若 ξ是 Ax=0 的解, η是 Ax=b 的解,则 ξ+η是 Ax=b 的解

( 3)若 η1,η2 是 Ax=b 的解,则 η1-η2 是 Ax=0 的解
【推广】

( 1)设 η1,η2,…, ηs 是 Ax=b 的解,则 k1η1+k2η2+…+ksη s 为



( 2)设 η1,η 2,…,ηs是 Ax=b 的 s 个线性无关的解, 则η2-η 1,η3-η 1,…,η s-η 1 为 Ax=0 的 s-1 个线性无关的解。

变式:① η1-η2, η3 -η2,…, ηs-η2      ② η2-η1, η3-η2,…, ηs-ηs-1

(三)基础解系

6、基础解系定义:

( 1) ξ1, ξ2,…, ξ s 是 Ax=0 的解

( 2) ξ1, ξ2,…, ξ s 线性无关

( 3) Ax=0 的所有解均可由其线性表示
→基础解系即所有解的极大无关组

注:基础解系不唯一。

任意 n-r (A)个线性无关的解均可作为基础解系。
★7、重要结论:(证明也很重要)

设 A 施 m ×n 阶矩阵, B 是 n×s 阶矩阵, AB=O

( 1) B 的列向量均为方程 Ax=0 的解

( 2) r(A)+r (B)≤ n(第 2 章,秩)

8、总结:基础解系的求法

( 1) A 为抽象的:由定义或性质凑n-r ( A)个线性无关的解
( 2) A 为数字的: A→初等行变换 →阶梯型
自由未知量分别取 1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系

(四)解的结构(通解)

9、齐次线性方程组的通解(所有解)

设 r( A) =r    

ξ 1,ξ 2,…, ξn-r 为 Ax=0 的基础解系

则 Ax=0 的通解为(其中 k1,k2,…, kn-r 为任意常数)
 
10、非齐次线性方程组的通解

设 r( A) =r

ξ 1,ξ 2,…, ξn-r 为 Ax=0 的基础解系, η 为 Ax=b 的特解,

则 Ax=b 的通解为(其中 k1,k2,…,kn-r 为任意常数)

(五)公共解与同解

11、公共解定义:

如果 α既是方程组 Ax=0 的解,又是方程组 Bx=0 的解,则称 α 为其公共解

12、非零公共解的充要条件:

方程组 Ax=0 与 Bx=0 有非零公共解
←→有非零解 ←→

13、重要结论(需要掌握证明)

( 1)设 A 是 m×n 阶矩阵,则齐次方程A^TAx=0Ax=0同解,r(A^T A) =r(A)

证明:
若AX1=0, 则 A^TAX1 = 0   即 AX=0 的解都是 A^TAX=0 的解
若 A^TAX2 = 0   则 X2^T A^TAX2 = 0
所以 (AX2)^T(AX2) = 0     所以 AX2 = 0 -- 这里要求A是实矩阵
-- 提示: AX2 是一个列向量
所以 A^TAX=0 的解也是 AX=0 的解
所以 齐次线性方程组Ax=0与A^TAx=0同解

实矩阵指的是矩阵中所有的数都是实数的矩阵。如果一个矩阵中含有除实数以外的数,那么这个矩阵就不是实矩阵。


( 2)设 A 是 m×n 阶矩阵, r(A)=n,B 是 n× s 阶矩阵,则齐次方程 ABx=0与Bx=0同解, r (AB) =r(B)

 

5 特征值与特征向量

(一)矩阵的特征值与特征向量

1、特征值、特征向量的定义:

设 A 为 n 阶矩阵,如果存在数 λ 及非零列向量 α,使得 Aα=λα ,称 α是矩阵A 属于特征值 λ的特征向量。

2、特征多项式、特征方程的定义:

| λI-A| 称为矩阵 A 的特征多项式( λ 的 n 次多项式)。

| λI-A |=0 称为矩阵 A 的特征方程( λ的 n 次方程)。

注 :特征方程可以写为 |A- λ I|=0

3、重要结论:

( 1)若α为齐次方程 Ax=0 的非零解,则 Aα=0·α,即α 为矩阵 A 特征值 λ=0的特征向量
( 2) A 的各行元素和为 k,则 (1, 1,…, 1) ^T为特征值为 k 的特征向量。

( 3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法
( 1) A 为抽象的:由定义或性质凑

( 2) A 为数字的:由特征方程法求解

5、特征方程法:

( 1)解特征方程 | λI-A|=0,得矩阵 A 的 n 个特征值 λ 1,λ 2,…, λn

注: n 次方程必须有 n 个根 (可有多重根,写作 λ1=λ2=… =λ s=实数,不能省略 )

( 2)解齐次方程( λ i I-A)=0,得属于特征值 λi 的线性无关的特征向量,即其基础解系(共 n-r (λ iE-A)个解)

6、性质:

( 1)不同特征值的特征向量线性无关

( 2) k 重特征值最多 k 个线性无关的特征向量       1≤n-r (λi I-A)≤ ki

( 3)设 A 的特征值为 λ1,λ2,…, λn,则 |A|= Πλi, Σλi =Σ aii

( 4)当 r (A)=1,即 A=αβ^T,其中 α,β 均为 n 维非零列向量,则 A 的特征值为 λ1=Σ aii =α^T β=β α^T,λ 2=…=λn=0

( 5)设 α是矩阵 A 属于特征值 λ的特征向量,则

 
(二)相似矩阵

7、相似矩阵的定义:

设 A、B 均为 n 阶矩阵,如果存在可逆矩阵P 使得 B=(P ^-1)AP,称 A 与 B 相似,记作 A~B

8、相似矩阵的性质

( 1)若 A 与 B 相似,则 f(A)与 f( B)相似

( 2)若 A 与 B 相似, B 与 C 相似,则 A 与 C 相似

( 3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)

【推广】
( 4)若 A 与 B 相似,则 AB 与 BA 相似, , A* 与 B*也相似

(三)矩阵的相似对角化

9、相似对角化定义:
如果 A 与对角矩阵相似,即存在可逆矩阵
 
P,使得 P-1AP=Λ=
 
称 A 可相似对角化。

注: Aαi=λiα i(αi ≠0,由于 P 可逆),故 P 的每一列均为矩阵A 的特征值 λi的特征向量

10、相似对角化的充要条件

( 1) A 有 n 个线性无关的特征向量

( 2) A 的 k 重特征值有 k 个线性无关的特征向量

11、相似对角化的充分条件:

( 1) A 有 n 个不同的特征值(不同特征值的特征向量线性无关)

( 2) A 为实对称矩阵

对称矩阵 : n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji),(i,j为元素的脚标)

12、重要结论:

( 1)若 A 可相似对角化,则 r (A)为非零特征值的个数, n-r (A)为零特征值的个数

( 2)若 A 不可相似对角化, r( A)不一定为非零特征值的个数

(四)实对称矩阵

13、性质

( 1)特征值全为实数

( 2)不同特征值的特征向量正交

( 3) A 可相似对角化,即存在可逆矩阵P 使得 P-1AP=Λ
( 4) A 可正交相似对角化,即存在正交矩阵Q,使得 Q-1AQ=QTAQ=Λ

 
6 二次型

(一)二次型及其标准形

1、二次型:

( 1)一般形式

( 2)矩阵形式(常用)

2、标准形:

如果二次型只含平方项,即

这样的二次型称为标准形(对角线)

3、二次型化为标准形的方法:

( 1)配方法:

通过可逆线性变换    x=Cy(C 可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。
★( 2)正交变换法:

通过正交变换 x=Qy,将二次型化为标准形

其中, λ 1,λ 2,…, λn 是 A 的 n 个特征值, Q 为 A 的正交矩阵

注 :正交矩阵 Q 不唯一, γi 与λi 对应即可。

(二)惯性定理及规范形

4、定义:
正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;

负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;
规范形:称为二次型的规范形。

5、惯性定理:

二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。

注:

( 1)由于正负惯性指数不变,所以规范形唯一。

( 2) p=正特征值的个数, q=负特征值的个数, p+q=非零特征值的个数 =r (A)

(三)合同矩阵

6、定义:
A、B 均为 n 阶实对称矩阵,若存在可逆矩阵C,使得 B=C^T AC,称 A 与 B 合同
△7、总结: n 阶实对称矩阵 A、 B 的关系
( 1) A、 B 相似( B=P-1AP)←→相同的特征值
( 2) A、 B 合同( B=CTAC)←→相同的正负惯性指数 ←→相同的正负特征值的个数
( 3) A、 B 等价( B=PAQ)←→r ( A) =r(B)
注:实对称矩阵相似必合同,合同必等价

(四)正定二次型与正定矩阵

8、正定的定义
二次型 x^T Ax,如果任意 x≠ 0,恒有 x^T Ax>0,则称二次型正定,并称实对称矩阵A 是正定矩阵。
9、n 元二次型 x^T Ax 正定充要条件:

( 1) A 的正惯性指数为 n
( 2) A 与 I合同,即存在可逆矩阵C,使得
( 3) A 的特征值均大于 0

( 4) A 的顺序主子式均大于 0( k 阶顺序主子式为前 k 行前 k 列的行列式)
10、n 元二次型 x^T Ax 正定必要条件:

( 1) aii >0

( 2) |A| >0
11、总结:二次型 x^T Ax 正定判定(大题)
( 1) A 为数字:顺序主子式均大于0

( 2) A 为抽象:①证 A 为实对称矩阵: A^T=A;②再由定义或特征值判定

12、重要结论:
( 1)若 A 是正定矩阵,则 正定

( 2)若 A、B 均为正定矩阵,则 A+B 正定

 

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值