相关性分析方法(Pearson、Spearman)

本文介绍了两种相关性分析方法——Pearson相关系数和Spearman秩相关系数。Pearson适用于连续变量,强调直线相关,而Spearman则对原始变量分布无要求,适合等级资料。同时提到了卡方检验在无序分类变量相关性分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  有时候我们根据需要要研究数据集中某些属性和指定属性的相关性,显然我们可以使用一般的统计学方法解决这个问题,下面简单介绍两种相关性分析方法,不细说具体的方法的过程和原理,只是简单的做个介绍,由于理解可能不是很深刻,望大家谅解。

1、Pearson相关系数 

  最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。该系数的计算和检验为参数方法,适用条件如下: (适合做连续变量的相关性分析)

(1)两变量呈直线相关关系,如果是曲线相关可能不准确。 

(2)极端值会对结果造成较大的影响 

(3)两变量符合双变量联合正态分布。 

2、Spearman秩相关系数 

  对原始变量的分布不做要求,适用范围较Pearson相关系数广,即使是等级资料,也可适用。但其属于非参数方法,检验效能较Pearson系数低。(适合含有等级

变量或者全部是等级变量的相关性分析)

3、无序分类变量相关性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值