2022吴恩达机器学习(Deep learning)课程对应笔记18:特征缩放

特征缩放是机器学习中优化梯度下降过程的一个重要步骤。文章介绍了当特征取值范围差异较大时,如何通过最大值缩放和均值归一化,或者Z-SCORE归一化来调整特征,使得模型参数对损失函数的影响更均衡,从而加速训练过程。
摘要由CSDN通过智能技术生成

2022吴恩达机器学习(Deep learning)课程对应笔记18

特征缩放

更新时间:2023/03/20
在这里插入图片描述

概述

本节将要介绍的内容是特征缩放,这一操作可以让梯度下降得更快。假设 x 1 x_{1} x1表示的是房间的大小 x 1 ∈ [ 300 , 2000 ] x_{1}\in[300,2000] x1[300,2000] x 2 x_{2} x2表示房子的房间数量, x 2 ∈ [ 0 , 5 ] x_{2}\in[0,5] x2[0,5]
H o u s e : x 1 = 2000 , x 2 = 5 , p r i c e = $ 500 k House:x_{1}=2000,x_{2}=5,price=\$500k House:x1=2000,x2=5,price=$500k
那么参数 w 1 w_{1} w1和参数 w 2 w_{2} w2的大小应该怎么设置呢?
显然 w 1 = 50 , w 2 = 0.1 , b = 50 w_{1}=50,w_{2}=0.1,b=50 w1=50,w2=0.1,b=50是一个比较合理的设置(下图右)
在这里插入图片描述

  • 当一个特征的可能取值范围很大时,如 x 1 x_{1} x1表示的是房间的大小 x 1 ∈ [ 300 , 2000 ] x_{1}\in[300,2000] x1[300,2000],那么该特征对应的参数倾向于很小( w 1 w_{1} w1很小)
  • 当一个特征的可能取值范围很小时,如 x 2 x_{2} x2表示房子的房间数量, x 2 ∈ [ 0 , 5 ] x_{2}\in[0,5] x2[0,5],那么该特征对应的参数倾向于很小( w 2 w_{2} w2很大)

如下图,当输入特征size的取值范围很大,输入特征bedrooms很小时(如下图左)输入特征size对应的参数 w 1 w_1 w1变化很小就会对模型的损失影响很大,输入特征bedrooms对应的参数 w 2 w_2 w2变化很大对模型的损失影响都会很小(如下图右)
在这里插入图片描述
上面提到的这个问题就会到最终 J ( w 1 , w 2 ) J(w_1,w_2) J(w1,w2)损失函数的图像是一个瘦长的椭圆,细小的 w 1 w_1 w1 w 2 w_2 w2变化都会导致梯度来回振荡,最终导致收敛很慢。

在这里插入图片描述
那么一个有效的方法就是特征缩放,像上图一样将特征 x 1 x_1 x1 x 2 x_2 x2归一化到同一个参数范围,那么对应的参数 w 1 w_1 w1 w 2 w_2 w2对损失函数 J ( w 1 , w 2 ) J(w_1,w_2) J(w1,w2)的影响就会一样大,也就是实现了从椭圆到圆的转变。

在这里插入图片描述

下面是如何实现特征缩放

如下图是最大值缩放
在这里插入图片描述
下面是均值归一化
x 1 = x 1 − μ 1 m a x ( x 1 ) − m i n ( x 1 ) ,           x 2 = x 2 − μ 2 m a x ( x 2 ) − m i n ( x 2 ) x_1=\frac{x_1-\mu_1}{max_{(x_1)}-min_{(x_1)}},\ \ \ \ \ \ \ \ \ x_2=\frac{x_2-\mu_2}{max_{(x_2)}-min_{(x_2)}} x1=max(x1)min(x1)x1μ1,         x2=max(x2)min(x2)x2μ2
在这里插入图片描述
Z-SCORE归一化:
x 1 = x 1 − μ 1 σ 1 ,           x 2 = x 2 − μ 2 σ 2 x_1=\frac{x_1-\mu_1}{\sigma_1},\ \ \ \ \ \ \ \ \ x_2=\frac{x_2-\mu_2}{\sigma_2} x1=σ1x1μ1,         x2=σ2x2μ2
在这里插入图片描述
特征缩放的范围并没有严格的标准,下面都是可以的

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值