2022吴恩达机器学习(Deep learning)课程对应笔记22:过拟合与正则化

本文介绍了过拟合和欠拟合的概念,通过回归和分类模型举例。解决过拟合的方法包括增加训练数据、特征选择和正则化。正则化通过限制参数的大小来防止模型复杂度过高,其中λ是正则化系数,影响正则化程度。文章详细阐述了正则化线性回归和逻辑回归的梯度下降过程。
摘要由CSDN通过智能技术生成

2022吴恩达机器学习(Deep learning)课程对应笔记22

过拟合与正则化

更新时间:2023/03/21
在这里插入图片描述

回归例子

先认识一下什么事过拟合和欠拟合,如下图:

  • 术语积累:欠拟合=高偏差
  • 过拟合=高方差

在这里插入图片描述

分类例子

上面是回归模型的例子,下面看一下分类模型的例子
在这里插入图片描述

解决过拟合

在这里插入图片描述

下面就介绍一下怎么解决过拟合的方法

  1. 收集更多的训练集数据,也就是扩大训练集
  2. 有选择性的使用特征,也就是说不用把每个特征都考虑上,只考虑关键特征。(但是存在把有用的特征丢弃的风险)
  3. 正则化技术:减小参数的大小。比如减小参数 w ⃗ \vec{w} w b b b的大小,使得最终的预测结果不被某一两个对应参数( w i , w j w_i,w_j wi,wj)最大的特征( x i , x j x_i,x_j xi,xj)取值影响。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    下面是小结一下:

在这里插入图片描述

正则化代价函数

在这里插入图片描述

下面看下应该如何正则化代价函数:

这是一个直观的例子,当 w 3 , w 4 w_3,w_4 w3,w4,很大的时候整个模型的loss也会很大

在这里插入图片描述

  • 正则化的思想其实就是得到一个参数值更小的模型( s a m l l   v a l u e s   w 1 , w 2 , . . . , w n , b samll\ values\ w_1,w_2,...,w_n,b samll values w1,w2,...,wn,b),就越难过拟合。
  • 通常来说并不知道那个特征的影响更大,也就是不知道惩罚哪个特征,所以一般会惩罚所有特征对应的参数。所构建的具有正则化项的参数如下图中的公式所示。(通常不会惩罚偏置项)
    在这里插入图片描述
    在正则化的过程中正则化系数 λ \lambda λ的取值对正则化项非常重要,

在这里插入图片描述

正则化线性回归

在这里插入图片描述

下面是加入了正则化项的线性回归的梯度下降过程,b的更新过程咩有变化,只是参数 w j w_j wj的更新过程发生了变化

在这里插入图片描述

下面是具体的带正则化项的线性回归模型梯度下降过程。在更新参数 w j w_j wj时带正则化项的作用,实际上就是更新 w j w_j wj时,把 w j w_j wj收缩为原来的 1 − α λ m 1-\alpha\frac{\lambda}{m} 1αmλ倍,其中 α \alpha α表示学习率, λ \lambda λ表示正则化系数, m m m表示数据集大小。

在这里插入图片描述

下面是具体的损失函数计算过程

在这里插入图片描述

正则化逻辑回归

在这里插入图片描述

逻辑回归的正则化参数如下

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值