Bob is very interested in the data structure of a tree. A tree is a directed graph in which a special node is singled out, called the "root" of the tree, and there is a unique path from the root to each of the other nodes.
Bob intends to color all the nodes of a tree with a pen. A tree has N nodes, these nodes are numbered 1, 2, ..., N. Suppose coloring a node takes 1 unit of time, and after finishing coloring one node, he is allowed to color another. Additionally, he is allowed to color a node only when its father node has been colored. Obviously, Bob is only allowed to color the root in the first try.
Each node has a “coloring cost factor”, Ci. The coloring cost of each node depends both on Ci and the time at which Bob finishes the coloring of this node. At the beginning, the time is set to 0. If the finishing time of coloring node i is Fi, then the coloring cost of node i is Ci * Fi.
For example, a tree with five nodes is shown in Figure-1. The coloring cost factors of each node are 1, 2, 1, 2 and 4. Bob can color the tree in the order 1, 3, 5, 2, 4, with the minimum total coloring cost of 33.
Given a tree and the coloring cost factor of each node, please help Bob to find the minimum possible total coloring cost for coloring all the nodes.
The input consists of several test cases. The first line of each case contains two integers N and R (1 <= N <= 1000, 1 <= R <= N), where N is the number of nodes in the tree and R is the node number of the root node. The second line contains N integers, the i-th of which is Ci (1 <= Ci <= 500), the coloring cost factor of node i. Each of the next N-1 lines contains two space-separated node numbers V1 and V2, which are the endpoints of an edge in the tree, denoting that V1 is the father node of V2. No edge will be listed twice, and all edges will be listed.
A test case of N = 0 and R = 0 indicates the end of input, and should not be processed.
For each test case, output a line containing the minimum total coloring cost required for Bob to color all the nodes.
5 1
1 2 1 2 4
1 2
1 3
2 4
3 5
0 0
这道题是最近做的一个题,因为数据范围和poj上的不同,所以涉及到的数据结构可能不要用。
Poj2054
给定一棵N个有权值的节点的有根树(默认根节点编号为1)。每个节点的权值为Ci。
现在需要遍历这棵树。每访问到一个点,该点的访问代价为这个点的权值与当前未被访问的点的权值之和。
遍历顺序为拓扑序,即访问i时i的父亲必须已经被访问。
求最小遍历代价W。遍历代价为每个点的访问代价之和。
ò 对于每一次新的访问,我们要计算所有未被访问的点权之和。显然这个计算式很繁琐且不易处理。
ò 思考:根据访问代价的计算规则,对于根节点,它的权值需要计算1次;对于第2个访问的点,它的权值需要计算2次;对于第3个点……以此类推。
ò 发现:每个点权的计算次数只与遍历顺序有关!即访问这个点的时间戳。
ò 给定一棵N个有权值的节点的有根树(默认根节点编号为1)。每个节点的权值为Ci。
ò 现在需要遍历这棵树。每个点的访问代价为这个点的权值与访问它的时间戳的乘积。
ò 遍历只能按拓扑序,即访问i时i的父亲必须已经被访问。
ò 求最小遍历代价。遍历代价为每个点的访问代价之和。
ò 转化的好处?使代价函数的计算式更加确定且易于计算。
ò 定义访问序列为一个排列P={i1,i2,i3...in-1,in},表示节点的访问顺序。
ò 定义点权序列为T={Ci1,Ci2,Ci3…Cin-1,Cin}。
ò 由简化问题的贪心解法,我们考虑尽量访问当前未访问的点权最大节点i。然而由于拓扑序的限制,我们想要访问它,必须先访问它的父亲。
ò 猜想:当前点权最大的节点i必定是在访问它的父亲j后立刻访问,否则得不到最优答案。
ò 猜想是否正确?
令当前最大节点为i,它的父亲为j。在访问序列P中i的位置为xi,j的位置为xj,假设xi+1<xj。
ò 关键:对于所有的k满足xj<xk<xi,这些点必定不是j的祖先或i的后代。
ò 我们在序列P中交换i和k,P仍然是一个合法的访问序列。
ò 显然地,由于Ci是访问j时所有未访问点的点权最大值,那么交换后的访问序列P对应的遍历代价变小了。
ò 进一步,将i交换到xj+1的位置是最优的。
ò 于是猜想是正确的。
ò 结论1:当前最大节点Ci必定是在访问它的父亲j后立刻访问。
ò
ò 由结论1知,在访问序列中,i和j应该是相邻的,j在前,i在后。
ò 那么i和j可以合并为一个结点k,k的父节点与j的父结点相同,k的子结点是所有j的子结点和i的子结点。然后用k代替树中的j和i,这样形成一棵n-1个结点的树。
ò 合并的好处?
ò 问题的规模缩小了。
ò 新的子问题:k在新树的访问序列中的位置?
ò 思考:访问序列P中k必然在k的后代之前,那么我们需要讨论的是k与非k后代的节点的相对位置。现在有两个选择:一是先访问k,然后访问非k的后代的m个结点(i1,i2,...,im) ;二是先访问非k的后代的m个结点(i1,i2,...,im),然后访问k。
ò 我们需要知道怎样的相对位置使最终代价最小。
ò 当前决策k完成时第二种选择相对于第一种选择费用之差为:
ò F2-F1=(Ci+Cj)×m-{sigma(Cik)|k=1..m}×2
ò 也就是说,第二种方案先访问m个节点,这m个节点相比第一种方案提前了2个时间点,那么减少的费用是2×{sigma(Cik)|k=1..m};后访问i和j,i,j相比第一种方案延后了m个时间点,增加的费用是(Ci+Cj)×m。
ò 1.标记根节点为第一个访问的节点。
ò 2.求出当前未访问节点中的最大点权节点i。
ò 3.将i和它的父亲j合并为一个节点,节点权值为两者权值的算术平均数。在序列P中将j的后继置为i。同时更新树的信息。
ò 4.若当前树中节点数大于1,则转第2步。
ò 5.树的大小为1时算法结束。
ò 6.扫描求得的P序列得到答案。
ò 时间复杂度:O(N^2)。期望得分50-70分。
ò 注意到我们每次操作需要得到当前最大权对应的节点i并将i的儿子的父亲改为i的父亲。
ò O(N)的扫描成为算法复杂度的瓶颈。
ò 如何高效求最大值?
ò 推荐数据结构:最大堆(O(LogN))。
ò 如何高效地将i的儿子的父亲改为i的父亲?
ò 推荐数据结构:并查集(O(α(N)))。
ò 总的时间复杂度:O(NLogN)。期望得分100分。