遥感
文章平均质量分 82
梦想的初衷~
了解内容私信哦
展开
-
如何用ChatGPT结合Python处理遥感数据
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将带您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。特别设计了15个真实案例,提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。原创 2024-11-05 10:40:10 · 901 阅读 · 0 评论 -
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算
您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。特别设计了15个真实案例,提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。(5)数据的可视化与分布分析。原创 2024-11-03 11:48:58 · 1147 阅读 · 0 评论 -
生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展/ 解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题
卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题.碳储量、碳收支与碳循环中的遥感技术。估算模型的构建与森林碳储量的估算。基于夜间灯光数据的碳排放模拟案例。遥感数据的处理与特征参量的提取。原创 2024-10-31 17:07:05 · 382 阅读 · 0 评论 -
特别设计了15个真实案例,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域......
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将带您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。特别设计了15个真实案例,免费提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。(2)制作和标注机器学习的标签数据。原创 2024-10-31 16:07:34 · 628 阅读 · 0 评论 -
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战应用
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将带您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。特别设计了15个真实案例,免费提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。(2)制作和标注机器学习的标签数据。原创 2024-10-30 13:31:19 · 1086 阅读 · 0 评论 -
基于Fragstats的土地利用景观格局分析应用
案例2:京津冀景观生态风险空间异质性特征分析。十二、案例1:京津冀地区土地利用变化及景观格局分析。二、 Fragstats界面与数据格式。三、数据准备:ArcGIS软件操作。九、Fragstats景观指数计算。十、景观格局指数空间显示与分析。四、数据准备:数据结构及变换。五、数据准备:数据投影及变换。六、数据准备:数据采集与编辑。七、数据准备:数据获取及处理。一、景观格局及相关软件介绍。十一、结果显示与地图制图。八、土地利用统计分析。原创 2024-10-25 16:33:33 · 333 阅读 · 0 评论 -
GPT-ArcGIS数据处理、空间分析、可视化及多案例综合应用--城市规划、环境科学、交通管理等,发挥着什么作用
GIS以其强大的空间数据处理、先进的空间分析工具、灵活的地图制作与可视化能力、广泛的扩展性和定制性,成为地理信息科学的核心工具。而GPT则以其在自然语言处理、文本生成、智能对话和知识库构建方面的优势,为GIS的智能化和自动化带来了新的可能性,提升了文本创作的效率和智能系统的交互体验。ArcGIS作为GIS领域的领先平台,具备处理海量空间数据、执行复杂空间分析、制作专业地图、进行遥感图像处理和分析、实现二次开发等众多优势。6.5 案例:AI助力ArcGIS实现对txt、excel数据的读取及点数据形成。原创 2024-10-23 16:50:24 · 656 阅读 · 0 评论 -
GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例实践应用
为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)、航天宏图的PIE Engine和阿里的AI Earth等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。原创 2024-10-23 16:48:09 · 912 阅读 · 0 评论 -
合成孔径雷达干涉测量InSAR数据处理、地形三维重建、形变信息提取、监测等实践技术应用
合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)技术作为一种新兴的主动式微波遥感技术,凭借其可以穿过大气层,全天时、全天候获取监测目标的形变信息等特性,已在地表形变监测、DEM生成、滑坡、火山活动、冰川运动、人工建筑物形变信息提取等多种领域展开了成功应用。InSAR已成为测绘、遥感、地球物理、地质工程、环境工程、土木工程、灾害监测评估、资源勘探以及地理信息工程等相关领域科学研究与工程实践的重要技术手段之一。原创 2024-10-21 17:59:20 · 349 阅读 · 0 评论 -
R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
因此,遥感随机森林建模与空间预测的应用能够有效提升遥感数据分析的精度和可靠性,是许多研究者关注的热点。在R语言中,随机森林的实现与应用非常方便,R语言提供了多种包用于构建和优化随机森林模型。此外,R语言在数据可视化方面的优势使得用户能够直观地展示模型的结果和变量的重要性,进一步提高了分析的可解释性和应用价值。因此,R语言中的随机森林工具因其易用性、灵活性和强大的功能,成为遥感数据分析中不可或缺的工具。(2)R语言基础语法与数据结构,包括:程序包安装、加载、更新,数据读取与输出,ggplot2常规画图等。原创 2024-10-17 11:28:05 · 1213 阅读 · 0 评论 -
双碳目标下基于遥感技术的碳储量、碳收支、碳循环等多领域监测与模拟实践技术应用
卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。本此课程的目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题。碳储量、碳收支与碳循环中的遥感技术。估算模型的构建与森林碳储量的估算。基于夜间灯光数据的碳排放模拟案例。遥感数据的处理与特征参量的提取。原创 2024-10-17 10:31:15 · 633 阅读 · 0 评论 -
Noah-MP陆面过程模型建模方法与站点、区域模拟
了解陆表过程的主要研究内容以及陆面模型在生态水文研究中的地位和作用;熟悉模型的发展历程,常见模型及各自特点;理解Noah-MP模型的原理,掌握Noah-MP模型所需的系统环境与编译环境的搭建方法,熟悉linux系统操作环境;掌握单站和区域的模拟、模拟结果的输出和后续分析及可视化等方法。原创 2024-10-15 16:52:12 · 206 阅读 · 0 评论 -
Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用
与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有显著优势,提供了丰富的计算资源和巨大的云存储能力,节省大量数据下载和预处理时间。在课程最后,还将结合多年AI使用经验,深入分享AI大模型在科研辅助方面的多项实用技巧,包括文献查找、分析总结、论文撰写、图表解读、语言润色等,以助力科研人员在学术研究中取得更大突破并满足国际交流的需求。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。原创 2024-08-13 09:09:02 · 868 阅读 · 0 评论 -
遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征,是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。另一方面,随着深度学习的不断发展,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的检测模型。3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等。1.一份完整的Faster-RCNN 模型下实现遥感影像的目标检测。原创 2024-08-12 18:12:40 · 926 阅读 · 0 评论 -
基于站点、模式、遥感多源降水数据融合实践技术应用
目前,有四种主要方式获取降水数据:1)雨量计观测,2)地基雷达遥感,3)卫星遥感,4)模式模拟。因此,有必要将卫星遥感和模式数据结合起来,进一步提供高质量、高分辨率的降水数据。美国多源加权集合降水(MSWEP)使用加权集合方法来合并全球高质量的降水数据,取得了好的效果。这些年已有大量研究对遥感降水产品(如TMPA 3B42、CMORPH、PERSIANN-CDR)进行了评估,发现这些数据有着各种各样问题,尤其在冬季。而模式中的降水表现优于卫星数据,可以进一步补充和改善这些地区卫星数据的不足。原创 2024-08-09 09:19:20 · 479 阅读 · 0 评论 -
PROSAIL模型前向模拟与植被参数遥感提取代码实践技术
传统的地面实测方法能够得到比较准确的植被参数(如叶面积指数、覆盖度、生物量、叶绿素、干物质、叶片含水量、FPAR等),但其获取信息有限,难以满足大范围提取植被参数的需求,尤其在异质地表区域。遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。关注科研技术平台公众号。原创 2024-08-09 09:05:28 · 719 阅读 · 0 评论 -
梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题
卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。本此课程的目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题。随着碳中和目标以及全球碳盘点的现实压力,基于遥感技术的碳监测成为了领域热点。3.碳储量、碳收支与碳循环中的遥感技术。原创 2024-08-08 09:59:13 · 1002 阅读 · 0 评论 -
遥感影像信息提取与案例分析实践技术应用
来自双一流重点高校,长期从事GIS/RS/3S技术及其生态环境领域中的应用等方面的研究和教学工作,并参与GIS的二次开发,发表多篇sci论文,具有资深的技术底蕴和专业背景。关注科研技术平台公众号。原创 2024-08-06 08:54:00 · 213 阅读 · 0 评论 -
遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展
卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题。随着碳中和目标以及全球碳盘点的现实压力,基于遥感技术的碳监测成为了领域热点。3.碳储量、碳收支与碳循环中的遥感技术。5.遥感回归模型的构建与碳储量估算。原创 2024-08-06 08:50:01 · 661 阅读 · 0 评论 -
Noah-MP模型丨水文循环模拟、碳循环模拟、土壤水分状况进行预测、模拟植被的生长状况、气候变化研究
陆面过程的主要研究内容(陆表能量平衡、水循环、碳循环等),介绍陆面过程研究的重要性。原创 2024-08-05 17:46:03 · 948 阅读 · 0 评论 -
“卫星-无人机-地面”遥感数据快速使用及地物含量计算的实现方法实践
随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国双利合谱、智科远达、中科谱光等无人机数据的兴起,遥感数据越来越易得。对卫星、无人机和地面遥感的多平台、多传感器应用现状,以及涉及的核心技术具有很深的理解,精通ArcGIS、ENVI、R语言、Unscrambler等分析工具,熟悉目前国内外卫星、无人机多光谱、高光谱、激光雷达、ASD、PSR等传感器的应用现状,具有丰富的科研及遥感信息提取经验。2. 协同处理天空地数据的必要性。原创 2024-08-01 15:03:46 · 183 阅读 · 0 评论 -
Noah-MP模型丨水文循环模拟、碳循环模拟、土壤水分状况进行预测、模拟植被的生长状况、气候变化研究
陆面过程的主要研究内容(陆表能量平衡、水循环、碳循环等),介绍陆面过程研究的重要性。原创 2024-08-01 14:56:50 · 1009 阅读 · 0 评论 -
双碳目标下基于“遥感+”集成技术的碳储量、碳排放、碳循环、温室气体等多领域监测与模拟
卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。本此课程的目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题。随着碳中和目标以及全球碳盘点的现实压力,基于遥感技术的碳监测成为了领域热点。3.碳储量、碳收支与碳循环中的遥感技术。原创 2024-07-31 08:35:35 · 501 阅读 · 0 评论 -
【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用
与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有显著优势,提供了丰富的计算资源和巨大的云存储能力,节省大量数据下载和预处理时间。在课程最后,还将结合多年AI使用经验,深入分享AI大模型在科研辅助方面的多项实用技巧,包括文献查找、分析总结、论文撰写、图表解读、语言润色等,以助力科研人员在学术研究中取得更大突破并满足国际交流的需求。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。原创 2024-07-09 17:29:27 · 858 阅读 · 0 评论 -
激光雷达数据处理
特点:Terrasolid是一款专业的激光雷达数据处理软件,主要用于地理信息系统(GIS)和测绘领域,提供了丰富的地理数据处理和分析工具。特点:ArcGISPro是一款专业的地理信息系统(GIS)软件,提供了丰富的地理数据处理、分析和可视化功能,包括激光雷达数据处理工具。特点:ENVI是一款专业的遥感数据处理软件,提供了丰富的遥感图像处理和分析功能,包括对激光雷达数据的处理和分析。应用:适用于地图制作、空间分析、地理数据管理等领域,可以处理各种类型的地理数据,包括激光雷达数据。原创 2024-07-03 14:57:27 · 657 阅读 · 0 评论 -
“揭秘气溶胶的气候密码:Python带你洞悉地球环境变化“
MODIS通过成像光谱技术获取不同波长的遥感数据,从而得到气溶胶的空间分布、光学厚度等信息,而CALIOP则通过激光雷达技术获取气溶胶的类型和垂直分布信息。然而,处理和分析这些数据需要一定的专业技术和工具。Python作为一种强大且易于学习的编程语言,已广泛应用于数据科学和大气科学领域,Python凭借其强大的数据处理能力,可以高效处理海量的气溶胶数据。尤其在“碳中和”目标的驱动下,研究气溶胶对“碳中和”的气候影响及其环境效应,不仅对科学研究具有重大意义,同时也为政策制定提供了重要依据。原创 2024-07-03 14:41:14 · 612 阅读 · 0 评论 -
激光雷达数据处理与典型案例分析实践技术应用
特点:Terrasolid是一款专业的激光雷达数据处理软件,主要用于地理信息系统(GIS)和测绘领域,提供了丰富的地理数据处理和分析工具。特点:ArcGISPro是一款专业的地理信息系统(GIS)软件,提供了丰富的地理数据处理、分析和可视化功能,包括激光雷达数据处理工具。特点:ENVI是一款专业的遥感数据处理软件,提供了丰富的遥感图像处理和分析功能,包括对激光雷达数据的处理和分析。特点:LiDAR360是一款专业的激光雷达数据处理软件,提供了丰富的点云处理、配准、分类、可视化等功能。原创 2024-06-27 09:48:23 · 685 阅读 · 0 评论 -
“Python+”集成技术高光谱遥感数据处理与机器学习深度应用
尽管大部分物质在人眼中看似无异,然而高光谱遥感的观察下,它们呈现出独特的"光谱特征"。这种能够窥见事物的"本质"能力具备着革命性的潜能,对精准农业、地球观测、艺术分析和医学等领域带来巨大的影响。通过通俗易懂的课程,我们希望能够让您更加深入地了解和掌握高光谱的知识与技术。5.高光谱数据预处理-机器学习-深度学习-图像分类-参数回归等12个专题练习。1.全套的高光谱数据处理方法和应用案例(包含python源码)02)使用自己的数据进行机器学习(envi标注数据)04)高光谱遥感的历史和发展。原创 2024-06-25 10:00:07 · 881 阅读 · 0 评论 -
ArcGIS常用操作技巧,快快学起来
栅格影像的裁剪工具在:ArcToolbox-->数据管理工具-->栅格-->栅格处理-->裁剪(ArcToolbox-->DataManagerment Tolls-->Raster-->Raster Processing-->Clip)。重叠数据的交集叠加分析工具位于:ArcToolbox-->分析工具-->叠加工具-->相交(ArcToolbox-->AnalysisTools-->overlay-->Intersect)。叠加分析就是找出两个图层之间的公共交集部分,并重新生成了一个新的图层。原创 2024-06-19 15:48:55 · 1089 阅读 · 0 评论 -
GPT-ArcGIS数据处理、空间分析
结合ArcGIS和GPT的优势,将重点讲解AI大模型应用、ArcGIS工作流程及功能、Prompt使用技巧、AI助力工作流程、AI助力数据读取与处理、AI助力空间分析、AI助力遥感分析、AI助力二次开发、AI助力科研绘图以及ArcGIS与AI的综合应用。这些内容不仅涵盖了GIS和AI的基础理论和方法,还包括了实际案例分析和操作实践,旨在帮助学员掌握GIS和AI结合应用的前沿技术和方法,提升个人专业技能,为未来的职业发展和科研创新打下坚实的基础。6.2 案例:AI助力ArcGIS点、线、面等数据创建。原创 2024-06-17 16:47:49 · 420 阅读 · 0 评论 -
Python星载气溶胶数据处理与反演分析实践技术应用
MODIS通过成像光谱技术获取不同波长的遥感数据,从而得到气溶胶的空间分布、光学厚度等信息,而CALIOP则通过激光雷达技术获取气溶胶的类型和垂直分布信息。然而,处理和分析这些数据需要一定的专业技术和工具。Python作为一种强大且易于学习的编程语言,已广泛应用于数据科学和大气科学领域,Python凭借其强大的数据处理能力,可以高效处理海量的气溶胶数据。尤其在“碳中和”目标的驱动下,研究气溶胶对“碳中和”的气候影响及其环境效应,不仅对科学研究具有重大意义,同时也为政策制定提供了重要依据。原创 2024-06-14 15:11:24 · 735 阅读 · 0 评论 -
如何利用ChatGPT辅助下处理:ENVI、GEE、Python等遥感数据
遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。ChatGPT先进人工智能模型的开发,开辟了该领域的新领域。关注科研技术平台公众号。原创 2024-06-13 17:12:34 · 362 阅读 · 0 评论 -
植被参数光学遥感反演方法(Python)及遥感与生态模型数据同化算法
遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。随着科学技术的发展和生态文明建设的需要,借助遥感数据反演植被参数,可为生态系统健康评价提供关键的数据支持,并且植被参数遥感反演是当前遥感应用研究的重要内容之一,也是国际遥感领域的热点研究方向。原创 2024-05-29 15:27:55 · 489 阅读 · 0 评论 -
长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用
植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。原创 2024-05-13 16:53:01 · 929 阅读 · 0 评论 -
GPT-ArcGIS数据处理、空间分析、可视化及多案例
结合ArcGIS和GPT的优势,本次培训班将重点讲解AI大模型应用、ArcGIS工作流程及功能、Prompt使用技巧、AI助力工作流程、AI助力数据读取与处理、AI助力空间分析、AI助力遥感分析、AI助力二次开发、AI助力科研绘图以及ArcGIS与AI的综合应用。这些内容不仅涵盖了GIS和AI的基础理论和方法,还包括了实际案例分析和操作实践,旨在帮助学员掌握GIS和AI结合应用的前沿技术和方法,提升个人专业技能,为未来的职业发展和科研创新打下坚实的基础。原创 2024-05-06 14:15:55 · 913 阅读 · 0 评论 -
高光谱深度学习机器学习实践
结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题,通过复现高光谱数据处理和分析过程,并解析代码,使学员掌握python高光谱数据处理技巧。通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。深入探讨了高光谱遥感数据处理技术,涵盖了基本概念、成像原理、数据处理和分析方法,以及运用机器学习和深度学习模型提取和应用高光谱信息的技术。原创 2024-05-06 14:11:16 · 1056 阅读 · 0 评论 -
重磅:生态遥感人必学的模型软件
在课程最后,还将结合多年AI使用经验,深入分享AI大模型在科研辅助方面的多项实用技巧,包括文献查找、分析总结、论文撰写、图表解读、语言润色等,以助力科研人员在学术研究中取得更大突破并满足国际交流的需求。通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。原创 2024-04-29 11:20:58 · 1200 阅读 · 0 评论 -
[重磅] 如何在ChatGPT辅助下处理ENVI遥感数据
遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。本课程重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。Chatgpt与python集成的卫星、机载和近景地面高光谱数据的处理和混合像元分解。Chatgpt在成像遥感领域的最新进展。原创 2024-04-29 11:15:43 · 587 阅读 · 0 评论 -
ChatGPT在遥感领域中的应用
遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。“遥感科学中的人工智能革命:ChatGPT应用指南”课程为我们打开了一扇窗户,让我们了解应用人工智能技术来改变遥感科学研究和应用的可能性。它突出了人工智能和遥感科学的融合,展示了我们在理解地球和与地球互动方面取得重大进展的潜力。原创 2024-04-25 16:28:58 · 1052 阅读 · 0 评论 -
Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用
在帮助科研工作者掌握Earth Engine的实际应用能力,以Python为基础,结合实例讲解平台搭建、影像数据分析、经典应用案例、本地与云端数据管理,以及云端数据论文出版级可视化等技能。最后,还将结合多年AI使用经验,深入分享AI大模型在科研辅助方面的多项实用技巧,包括文献查找、分析总结、论文撰写、图表解读、语言润色等,以助力科研人员在学术研究中取得更大突破并满足国际交流的需求。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。原创 2024-04-18 11:29:45 · 1270 阅读 · 0 评论