气候变化
文章平均质量分 76
梦想的初衷~
了解内容私信哦
展开
-
双碳目标下基于遥感技术的碳储量、碳收支、碳循环等多领域监测与模拟实践技术应用
卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题。随着碳中和目标以及全球碳盘点的现实压力,基于遥感技术的碳监测成为了领域热点。碳储量、碳收支与碳循环中的遥感技术。估算模型的构建与森林碳储量的估算。原创 2024-11-06 10:51:57 · 193 阅读 · 0 评论 -
基于站点、模式、遥感多源降水数据融合实践技术应用
目前,有四种主要方式获取降水数据:1)雨量计观测,2)地基雷达遥感,3)卫星遥感,4)模式模拟。因此,有必要将卫星遥感和模式数据结合起来,进一步提供高质量、高分辨率的降水数据。美国多源加权集合降水(MSWEP)使用加权集合方法来合并全球高质量的降水数据,取得了好的效果。这些年已有大量研究对遥感降水产品(如TMPA 3B42、CMORPH、PERSIANN-CDR)进行了评估,发现这些数据有着各种各样问题,尤其在冬季。而模式中的降水表现优于卫星数据,可以进一步补充和改善这些地区卫星数据的不足。原创 2024-08-09 09:19:20 · 479 阅读 · 0 评论 -
Python星载气溶胶数据处理与反演分析实践技术应用
MODIS通过成像光谱技术获取不同波长的遥感数据,从而得到气溶胶的空间分布、光学厚度等信息,而CALIOP则通过激光雷达技术获取气溶胶的类型和垂直分布信息。然而,处理和分析这些数据需要一定的专业技术和工具。Python作为一种强大且易于学习的编程语言,已广泛应用于数据科学和大气科学领域,Python凭借其强大的数据处理能力,可以高效处理海量的气溶胶数据。尤其在“碳中和”目标的驱动下,研究气溶胶对“碳中和”的气候影响及其环境效应,不仅对科学研究具有重大意义,同时也为政策制定提供了重要依据。原创 2024-06-14 15:11:24 · 735 阅读 · 0 评论