64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

解析1:使用动态规划,对于最上一排点(m,n)的最短路径长度f(m,n)永远等于f(m,n-1) + grid(m,n);对于最左边一列点,f(m,n)=f(m-1,n) + grid(m,n);对于其它点,永远f(m,n)=min(f(m-1,n),f(m,n-1))+grid(m,n),时间复杂度o(mn),代码如下:

class Solution {
    public int minPathSum(int[][] grid) {
        int m = grid.length;
		int n = grid[0].length;
		int[][] res = new int[m][n];
		for(int i=0;i<grid.length;i++){
			for(int j=0;j<grid[i].length;j++){
				if(i==0 && j ==0){
					res[i][j] = grid[i][j];
					continue;
				}
				if(i == 0){
					res[i][j] = res[i][j-1] + grid[i][j];
					continue;
				}
				if(j == 0){
					res[i][j] = res[i-1][j] + grid[i][j];
					continue;
				}
				res[i][j] = Math.min(res[i-1][j], res[i][j-1]) + grid[i][j];
			}
		}
		return res[m-1][n-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值