xiaojie_570的博客

东北大学在读研究生

Leetcode——64. Minimum Path Sum

题目原址

https://leetcode.com/problems/minimum-path-sum/description/

题目描述

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.

Exanple:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

解题思路

给一个二维数组,要求找到从左上角的元素到右下角元素经过路径中,所花费的总元素值之和最少的和。

这个题是一个经典DP。DP的解题方法就是当前的点的值与前一个点的值有关,所以要记录当前点的前一点的信息。这里不需要使用额外的空间,直接对给定的二维数组进行修改即可。因为要求只能向右和向下走,所以可以把二维数组分为4个部分

  • 第一部分是第一行,第一行中的元素(除第一行第一列的元素),后面的元素值变为其前边元素值与自己元素值之和
  • 第二部分是第一列,第一列的中元素除第一行第一列的元素),后面的元素值变为其前边元素值与自己元素值之和
  • 第三部分是第一行第一列的元素,该元素不变
  • 第四部分是二维数组中剩余的元素,现在当前元素与前面所有元素的和变为当前元素与前一个的元素和,因为要找到和最小,所以当前元素的值 = 当前元素+左边元素当前元素 + 上边元素的最小值
  • 最后将二维数组中所有的元素值都更改完成后,返回数组中最右边最下边的元素值即可。

AC代码

class Solution {
    public int minPathSum(int[][] grid) {
        int row = grid.length;
        int line = grid[0].length;
        for(int i = 0; i < row; i++) {
            for(int j = 0; j < line; j++) {
                if(i == 0 && j != 0) 
                    grid[i][j] = grid[0][j] + grid[0][j - 1];
                else if(j == 0 && i != 0)
                    grid[i][j] = grid[i][j] + grid[i - 1][j];
                else if(i == 0 && j == 0)
                    grid[i][j] = grid[i][j];
                else
                    grid[i][j] = Math.min(grid[i - 1][j] + grid[i][j], grid[i][j - 1] + grid[i][j]);
            }
        }
        return grid[row - 1][line - 1];        
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiaojie_570/article/details/80322783
个人分类: Leetcode_Array LeetCode
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

Leetcode——64. Minimum Path Sum

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭