自动化测试八宗罪- 读Test Automation Snake Oil的一点翻译和感想

Test Automation. Snake Oil  James Bach

 

1996年发表,1999年修订.

 

一宗罪 - Testing is a mere "sequence of actions", but an interactive cognitive process.

 

二宗罪 - "The only thing remains constant is change" and Variability is one of the great advantages of hand testing over script and playback testing.

 

三宗罪 - 测试工具本身.(可能现在会好很多)

 

四宗罪 - Testing always needs human intervention. 比如,AUT的改变,内存,文件系统,网络,以及,测试工具bug.

 

五宗罪 - 自动化测试不一定会减少人为错误.的确,有些人为错误可以通过自动化避免,但是,自动化也带来甚至更多的错误.

 

六宗罪 - 将人工测试与自动化测试比较是无意义的,因为二者是有根本区别的. 其实,在历数四五六宗罪的同时,作为自动化测试专家和自动化测试经理,作者一直在强调自动化测试只是众多测试方法中的一种,无法代替手工测试,不应偏废.

 

七宗罪 - 自动化测试不一定会节约成本.(对于初涉自动化测试的码农我,成本问题还不是我能考虑的.)

 

八宗罪 - 自动化测试甚至有可能给项目带来负面影响.如果需求不明,管理不善,或者AUT持续剧烈变化,自动化测试将成为梦魇.

 

个人体会:数"罪"言过其实了,其实所谓"罪",也非自动化测试带来的天灾,而是自动化测试人员带来的"人祸". 小卒我初涉自动化测试,体会还很肤浅.就目前公司进行的自动化测试而言,其第一宗罪已经有些若隐若现了.实际上,用户的操作可能与我们的测试用例完全不同,使用一系列动作来测试无可厚非,但问题是,如何组织这些动作,这些动作真的只是简单的sequence,还是一个interactive的cognitive的过程,实在是一门高深的学问.

 

希望我们老大别看见我这篇文章:)

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值