4503: 两个串
【题目描述】
【题解】
我们设置一个函数,F(j)=∑i=1∣T∣T(i)∗(S(i+j)−T(i))2F(j)=\sum_{i=1}^{|T|} T(i)*(S(i+j)-T(i))^2F(j)=∑i=1∣T∣T(i)∗(S(i+j)−T(i))2
为什么要这么设置呢,我们发现F(x)=0F(x)=0F(x)=0就是一个匹配的解,平方是为了方便计算,绝对值就不能进行拆分了。
转化当前的式子F(j)=∑i=1∣T∣T(i)∗(S2(i+j)−2∗S(i+j)T(i)+T2(i))F(j)=\sum_{i=1}^{|T|} T(i)*(S^2(i+j)-2*S(i+j)T(i)+T^2(i))F(j)=∑i=1∣T∣T(i)∗(S2(i+j)−2∗S(i+j)T(i)+T2(i))
最后得到F(j)=∑i=1∣T∣(S2(i+j)T(i)−2∗S(i+j)T2(i)+T3(i))F(j)=\sum_{i=1}^{|T|} (S^2(i+j)T(i)-2*S(i+j)T^2(i)+T^3(i))F(j)=∑i=1∣T∣(S2(i+j)T(i)−2∗S(i+j)T2(i)+T3(i))
将T的长度补0补成S的长度,然后式子就变成了这样F(j)=∑i=1n−j(S2(i+j)T(i)−2∗S(i+j)T2(i)+T3(i))F(j)=\sum_{i=1}^{n-j}(S^2(i+j)T(i)-2*S(i+j)T^2(i)+T^3(i))F(j)=∑i=1n−j(S2(i+j)T(i)−2∗S(i+j)T2(i)+T3(i))
T翻转不就变成了一个卷积的形式了吗?直接上FFT就好了。
【代码如下】
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=200005;
const double PI=acos(-1.0);
struct CP{
double x,y;
CP(double X=0,double Y=0){x=X,y=Y;}
CP operator +(const CP b)const{return CP(x+b.x,y+b.y);}
CP operator -(const CP b)const{return CP(x-b.x,y-b.y);}
CP operator *(const CP b)const{return CP(x*b.x-y*b.y,x*b.y+y*b.x);}
CP operator /(const int b)const{return CP(x/b,y/b);}
};
char s[MAXN],c[MAXN];int OUT,Len,lg2,Lens,Lenc,Sum,rev[MAXN],P[MAXN];CP Ans[MAXN],T[MAXN],T2[MAXN],S[MAXN],S2[MAXN];
void Getrev(){for(int i=0;i<Len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg2-1));}
void FFT(CP *A,int opt){
for(int i=0;i<Len;i++) if(rev[i]>i) swap(A[rev[i]],A[i]);
for(int i=1;i<Len;i<<=1){
CP WN=CP(cos(PI/i),opt*sin(PI/i));
for(int j=0;j<Len;j+=i<<1){
CP WNK=CP(1,0);
for(int k=0;k<i;k++,WNK=WNK*WN){
CP x=A[j+k],y=WNK*A[j+k+i];
A[j+k]=x+y;A[j+k+i]=x-y;
}
}
}
if(opt==-1) for(int i=0;i<Len;i++) A[i]=A[i]/Len;
}
int main(){
scanf("%s%s",s,c);Lens=strlen(s),Lenc=strlen(c);
for(int i=0;i<Lens;i++) S[i]=CP(s[i]-'a'+1,0);
for(int i=0;i<Lenc;i++)
if(c[i]=='?') T[Lenc-i-1]=CP(0,0);else T[Lenc-i-1]=CP(c[i]-'a'+1,0),Sum+=(c[i]-'a'+1)*(c[i]-'a'+1)*(c[i]-'a'+1);
for(Len=1,lg2=0;Len<=max(Lens,Lenc);Len<<=1,lg2++);
for(int i=0;i<Lens;i++) S2[i]=S[i]*S[i],S[i]=S[i]*2;
for(int i=0;i<Lenc;i++) T2[i]=T[i]*T[i];
Getrev();FFT(S,1),FFT(S2,1),FFT(T,1),FFT(T2,1);
for(int i=0;i<Len;i++) Ans[i]=S2[i]*T[i]-S[i]*T2[i];
FFT(Ans,-1);
for(int i=Lenc-1;i<Lens;i++) if(int(Ans[i].x+0.5+Sum)==0) P[++OUT]=i-Lenc+1;
printf("%d\n",OUT);
for(int i=1;i<=OUT;i++) printf("%d\n",P[i]);
return 0;
}