bzoj 4503: 两个串 (FFT+DP)

题目描述

传送门

题目大意:带通配符的字符串匹配,求询问串从母串中的匹配次数。
母串只包含小写字母,询问串包含小写字母和通配符?,长度<=100000

题解

刚开始想了一个比较傻的方法,发现TLE了,奇慢无比。
就是对于每个字符分别进行匹配。枚举当前字符,如果i母串的第i位为当前字符,那么f[i]=1;如果询问串的第j位为当前字符,g[j]=1.然后我们将询问串翻转,那么 h[i]=nj=1f[ij]g[j] 就表示用[i-m+1,i]去匹配,当前字符能匹配上几位。 zi=ah[i] +k==m 那么以这个位置为结尾可以匹配上,其中k表示通配符的个数。

这个算法在很多时候还是可以的,他的局限性在于对于每个字符都需要分开计算,对于字符集较大的字符串在时间上影响较大。

我们依然将询问串翻转,令 f[i]=nj=1(s[ij]s1[j])2s1[j] 其中s[i]表示母串的第i位,s1[j]表示询问串的第j位,如果 s1[j]=? ,则 s1[j]=0 .
那么上面的式子该如何理解呢?就是要么这一位有通配符,要么能匹配上,否则求和后都不是0,如果最后 f[i]=0 那么表示可以匹配上。
我们把上面式子中的平方拆开
f[i]=nj=1s[ij]2s1[j]+s1[j]32s[ij]s1[j]2
将第一项和第三项分别用FFT求解,最后把三部分合并,计算出f的值,统计答案即可。

代码

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define N 500003
#define pi acos(-1)
#define LL long long 
using namespace std;
struct data{
    double x,y;
    data(double X=0,double Y=0) {
        x=X,y=Y;
    }
}f[N],g[N];
data operator +(data a,data b) {
    return data(a.x+b.x,a.y+b.y);
}
data operator -(data a,data b){
    return data(a.x-b.x,a.y-b.y);
}
data operator *(data a,data b){
    return data(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
char s[N],s1[N];
int n,m,a[N],b[N],L,R[N],vis[30];
LL pos[N];
LL pow(LL x){
    return x*x;
}
void clear(data a[N],int n)
{
    for (int i=1;i<=n;i++) a[i].x=a[i].y=0;
}
void FFT(data a[N],int opt,int n)
{
    for (int i=0;i<n;i++)
     if (i>R[i]) swap(a[i],a[R[i]]);
    for (int i=1;i<n;i<<=1) {
        data wn=data(cos(pi/i),opt*sin(pi/i));
        for (int p=i<<1,j=0;j<n;j+=p) {
            data w=data(1,0);
            for (int k=0;k<i;k++,w=w*wn) {
                data x=a[j+k],y=w*a[j+k+i];
                a[j+k]=x+y; a[j+k+i]=x-y;
            }
        }
    }
    if (opt==-1) 
     for (int i=0;i<n;i++) a[i].x/=n;
}
int main()
{
    freopen("a.in","r",stdin);
    freopen("my.out","w",stdout);
    scanf("%s",s); n=strlen(s); n--;
    for (int i=0;i<=n;i++) a[i]=s[i]-'a'+1;
    scanf("%s",s1); m=strlen(s1); m--;
    int cnt=0;
    for (int i=0;i<=m;i++) 
     if (s1[i]=='?') b[m-i]=0,cnt++;
     else b[m-i]=s1[i]-'a'+1;
    int m1=n+m;
    int n1=0;
    for (n1=1;n1<=m1;n1<<=1) L++;
    for (int i=0;i<n1;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    LL sig=0;
    for (int i=0;i<=m;i++) sig+=(LL)pow(b[i])*b[i];
    for (int i=0;i<=n;i++) f[i].x=a[i];
    for (int i=0;i<=m;i++) g[i].x=pow(b[i]);
    FFT(f,1,n1); FFT(g,1,n1);
    for (int i=0;i<=n1;i++) f[i]=f[i]*g[i];
    FFT(f,-1,n1);
    for (int i=0;i<=n;i++) pos[i]=sig-2*(LL)(f[i].x+0.5);
    clear(f,n1); clear(g,n1);
    for (int i=0;i<=n;i++) f[i].x=pow(a[i]);
    for (int j=0;j<=m;j++) g[j].x=b[j];
    FFT(f,1,n1); FFT(g,1,n1);
    for (int i=0;i<=n1;i++) f[i]=f[i]*g[i];
    FFT(f,-1,n1);
    for (int i=0;i<=n;i++) pos[i]+=(LL)(f[i].x+0.5);
    int ans=0;
    //for (int i=0;i<=n;i++) cout<<pos[i]<<" ";
    //cout<<endl;
    for (int i=0;i<=n;i++) 
     if (!pos[i]&&i-m>=0) ans++;
    printf("%d\n",ans);
    for (int i=0;i<=n;i++) 
     if (!pos[i]&&i-m>=0) printf("%d\n",i-m);
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值