LeetCode第五题:最长回文子串(C语言)

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。

示例 1:

输入: “babad”
输出: “bab”
注意: "aba"也是一个有效答案。
示例 2:

输入: “cbbd”
输出: “bb”


解法一:暴力求解法

思想:
反转 S,使之变成 S’。找到 S 和 S’之间最长的公共子串,这也必然是最长的回文子串。
理由:如果找两个字符串的公共子串,i指向第一个字符串,j指向第二个字符串,用暴力求解法肯定就是i每走一步,j就不断的从头遍历第二个字符串,然后判断是否相等。
j从前往后走,就相当于原字符串从后向前走。
S=“abacdfgdcaba” , S ′ =“abacdgfdcaba”:S 以及 S’ 之间的最长公共子串为 “abacd”,显然,这不是回文。所以我们要加一个判断条件就可以了。
暴力算法的时间复杂度为O(n^3),在LeetCode中跑步过去,仅供参考

	//判断一个字符串是不是回文
	int IfPlalindrome(char *s) {
		int count = strlen(s);
		int left = 0;
		int right = count - 1;
		while (left < right)
		{
			if (s[left] != s[right])
			{
				return 0; //不是回文返回0,是回文返回1
			}
			left++;
			right--;
		}
		return 1;
	}
	//反转字符串
	char *reverse(char *s, int count)
	{
		char *p = (char *)malloc(sizeof(char) * (count + 1));
		int i = 0;
		for (; i < count; i++)
		{
			p[i] = s[count - i - 1];
		}
		p[i] = '\0';
		return p;
	}
	
	char* longestPalindrome(char* s) {
		int count = strlen(s);
		//arr中存放的是最长的回文子串
		char *arr = (char *)malloc(sizeof(char) * 1001);
		char *p = reverse(s, count);
		unsigned int max = 0;
		//arr1中存放每一次循环遇见的回文子串
		char arr1[2000];
		for (int i = 0; i < count; i++) {
			for (int j = 0; j < count; j++) {
				int m = i;
				int n = j;
				int k = 0;
				while (s[m] == p[n])
				{
					arr1[k] = s[m];
					k++;
					m++;
					n++;
				}
				arr1[k] = '\0';
				//判断是不是回文子串
				if (IfPlalindrome(arr1))
				{
					//和arr中的回文子串长度作对比,大的话,就更新
					if (strlen(arr1) > max)
					{
						max = strlen(arr1);
						strcpy(arr, arr1);
					}
				}
			}
		}
		return arr;
	}
解法二:动态规划

在暴力求解法中,判断子串用了很多重复的操作,动态规划就是要尽量避免重复的操作。
s的长度为N,生成一个N*N的二维数组dp[1001][1001]

  • dp[i][j] 表示从s[i]到s[j]是否是回文
  • dp[i][i] = true 因为dp[i][i]一定是回文
  • 在动态规划中只需要记录回文开始的位置和长度即可
    时间复杂度:O(n^2)
    空间复杂度:O(N^2)
    char* longestPalindrome(char* s)
   {
   	int len = strlen(s);
   	if (len <= 1) { return s; }
   	//定义bool类型的dp,只能为true或false
   	bool dp[1001][1001];
   	memset(dp, 0, sizeof(dp));
   	dp[0][0] = 1;
   	for (int i = 1; i < len; i++)
   	{
   		dp[i][i] = true;
   		//一定不要忽略,在下面k=2会用到
   		dp[i][i - 1] = true;
   	}
   	int left = 0;
   	int right = 0;
   	int max = 0;
   	//k表示回文子串的长度
   	for (int k = 2; k <= len; k++)
   	{
   		//i表示回文子串的起始位置
   		for (int i = 0; i < len - k + 1; i++)
   		{
   			if (s[i] == s[k - 1 + i] && dp[i + 1][k + i - 2])
   			{
   				dp[i][k - 1 + i] = true;
   				if (max < k - 1)
   				{
   					max = k - 1;
   					left = i;
   					right = k - 1 + i;
   				}
   			}
   		}
   	}
   
   	char *arr = (char *)malloc(sizeof(int) * (max * 2));
   	int i = 0;
   	for (; i <= max; i++)
   	{
   		arr[i] = s[left++];
   	}
   	arr[i] = '\0';
   	return arr;
   }
解法三:中心扩展法

以某个元素为中心,分别计算偶数长度的回文最大长度和奇数长度的回文最大长度。
时间复杂度O(N^2)

	char* longestPalindrome(char* s)
	{
		int len = strlen(s);
		if (len <= 1) { return s; }
		int start = 0;
		int maxlen = 0;
		//i表示中间元素下标
		for (int i = 1; i < len; i++)
		{
			//偶数长度
			int low = i - 1;
			int high = i;
			while (low >= 0 && high < len && s[low] == s[high])
			{
				low--;
				high++;
			}
			if (high - low - 1 > maxlen)
			{
				maxlen = high - low - 1;
				start = low + 1;
			}
			//奇数长度
			low = i - 1; high = i + 1;
			while (low >= 0 && high < len && s[low] == s[high])
			{
				low--;
				high++;
			}
			if (high - low - 1 > maxlen)
			{
				maxlen = high - low - 1;
				start = low + 1;
			}
		}
		char *arr = (char *)malloc(sizeof(int) * (maxlen * 2));
		int i = 0;
		for (; i < maxlen; i++)
		{
			arr[i] = s[start++];
		}
		arr[i] = '\0';
		return arr;
	}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值