给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。
示例 1:
输入: “babad”
输出: “bab”
注意: "aba"也是一个有效答案。
示例 2:
输入: “cbbd”
输出: “bb”
解法一:暴力求解法
思想:
反转 S,使之变成 S’。找到 S 和 S’之间最长的公共子串,这也必然是最长的回文子串。
理由:如果找两个字符串的公共子串,i指向第一个字符串,j指向第二个字符串,用暴力求解法肯定就是i每走一步,j就不断的从头遍历第二个字符串,然后判断是否相等。
j从前往后走,就相当于原字符串从后向前走。
S=“abacdfgdcaba” , S ′ =“abacdgfdcaba”:S 以及 S’ 之间的最长公共子串为 “abacd”,显然,这不是回文。所以我们要加一个判断条件就可以了。
暴力算法的时间复杂度为O(n^3),在LeetCode中跑步过去,仅供参考
//判断一个字符串是不是回文
int IfPlalindrome(char *s) {
int count = strlen(s);
int left = 0;
int right = count - 1;
while (left < right)
{
if (s[left] != s[right])
{
return 0; //不是回文返回0,是回文返回1
}
left++;
right--;
}
return 1;
}
//反转字符串
char *reverse(char *s, int count)
{
char *p = (char *)malloc(sizeof(char) * (count + 1));
int i = 0;
for (; i < count; i++)
{
p[i] = s[count - i - 1];
}
p[i] = '\0';
return p;
}
char* longestPalindrome(char* s) {
int count = strlen(s);
//arr中存放的是最长的回文子串
char *arr = (char *)malloc(sizeof(char) * 1001);
char *p = reverse(s, count);
unsigned int max = 0;
//arr1中存放每一次循环遇见的回文子串
char arr1[2000];
for (int i = 0; i < count; i++) {
for (int j = 0; j < count; j++) {
int m = i;
int n = j;
int k = 0;
while (s[m] == p[n])
{
arr1[k] = s[m];
k++;
m++;
n++;
}
arr1[k] = '\0';
//判断是不是回文子串
if (IfPlalindrome(arr1))
{
//和arr中的回文子串长度作对比,大的话,就更新
if (strlen(arr1) > max)
{
max = strlen(arr1);
strcpy(arr, arr1);
}
}
}
}
return arr;
}
解法二:动态规划
在暴力求解法中,判断子串用了很多重复的操作,动态规划就是要尽量避免重复的操作。
s的长度为N,生成一个N*N的二维数组dp[1001][1001]
- dp[i][j] 表示从s[i]到s[j]是否是回文
- dp[i][i] = true 因为dp[i][i]一定是回文
- 在动态规划中只需要记录回文开始的位置和长度即可
时间复杂度:O(n^2)
空间复杂度:O(N^2)
char* longestPalindrome(char* s)
{
int len = strlen(s);
if (len <= 1) { return s; }
//定义bool类型的dp,只能为true或false
bool dp[1001][1001];
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 1; i < len; i++)
{
dp[i][i] = true;
//一定不要忽略,在下面k=2会用到
dp[i][i - 1] = true;
}
int left = 0;
int right = 0;
int max = 0;
//k表示回文子串的长度
for (int k = 2; k <= len; k++)
{
//i表示回文子串的起始位置
for (int i = 0; i < len - k + 1; i++)
{
if (s[i] == s[k - 1 + i] && dp[i + 1][k + i - 2])
{
dp[i][k - 1 + i] = true;
if (max < k - 1)
{
max = k - 1;
left = i;
right = k - 1 + i;
}
}
}
}
char *arr = (char *)malloc(sizeof(int) * (max * 2));
int i = 0;
for (; i <= max; i++)
{
arr[i] = s[left++];
}
arr[i] = '\0';
return arr;
}
解法三:中心扩展法
以某个元素为中心,分别计算偶数长度的回文最大长度和奇数长度的回文最大长度。
时间复杂度O(N^2)
char* longestPalindrome(char* s)
{
int len = strlen(s);
if (len <= 1) { return s; }
int start = 0;
int maxlen = 0;
//i表示中间元素下标
for (int i = 1; i < len; i++)
{
//偶数长度
int low = i - 1;
int high = i;
while (low >= 0 && high < len && s[low] == s[high])
{
low--;
high++;
}
if (high - low - 1 > maxlen)
{
maxlen = high - low - 1;
start = low + 1;
}
//奇数长度
low = i - 1; high = i + 1;
while (low >= 0 && high < len && s[low] == s[high])
{
low--;
high++;
}
if (high - low - 1 > maxlen)
{
maxlen = high - low - 1;
start = low + 1;
}
}
char *arr = (char *)malloc(sizeof(int) * (maxlen * 2));
int i = 0;
for (; i < maxlen; i++)
{
arr[i] = s[start++];
}
arr[i] = '\0';
return arr;
}