《具体数学》学习笔记: 3.和式(下)

《具体数学》学习笔记: 3.和式(下)

序言:
本文将记录一个全新的数学知识—有限微积分,并将之与我们熟知的无限微积分作比对。

1. 无限微积分
高等数学或是微积分课程中,对于一个函数微分,借助微分算子(operator) d \rm d d 表达为:
d f ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h {\rm d}f(x) = \lim_{h \to 0}{\frac{f(x+h)- f(x)}{h}} df(x)=h0limhf(x+h)f(x)
算子(operator) d \rm d d 的作用是在一个函数上给出新的函数。如果 f f f 是从实数到实数的一个适当光滑的曲线,那么 d f {\rm d} f df亦然。
反过来,我们还能够对函数作积分(逆微分),借助积分算子(operator) ∫ \int ,并且可以与微分进行联系:
g ( x ) = d f ( x )   i f   a n d   o n l y   i f   ∫ g ( x ) d x = f ( x ) + C g(x) = {\rm d}f(x) {\rm \ if\ and\ only\ if\ } \int g(x){\rm d}x = f(x) + C g(x)=df(x) if and only if g(x)dx=f(x)+C
这里, ∫ g ( x ) d x \int g(x){\rm d}x g(x)dx g ( x ) g(x) g(x) 的不定积分,它是导数等于 g ( x ) g(x) g(x) 的一个函数类。另外,我们还有一个重要的微积分基本定理(牛顿-莱布尼兹公式):
∫ a b g ( x ) d x = f ( x ) ∣ a b = f ( b ) − f ( a ) \int_{a}^{b} g(x) {\rm d}x = f(x){\big |}_a^b = f(b) - f(a) abg(x)dx=f(x)ab=f(b)f(a)
以解决定积分的计算。

2. 有限微积分
对于整数,我们无法直接套用传统的无限微积分,但是我们也希望能够参考这种思路。由此,数学家们发展出了与传统无限微积分类似的“有限微积分”。定义差分算子 Δ \Delta Δ
Δ f ( x ) = f ( x + h ) − f ( x ) h ∣ h = 1 = f ( x + 1 ) − f ( x ) \Delta f(x) = \frac{f(x + h) - f(x)}{h} \bigg |_{h=1} = f(x+1) - f(x) Δf(x)=hf(x+h)f(x)h=1=f(x+1)f(x)
对于整数而言, h h h 至小为 1 1 1,因此 h = 1 h = 1 h=1 已经是所能达到的最接近的“极限”。在无限微积分中,我们有一个很简洁的关系式:
d ( x m ) = m x m − 1 {\rm d}(x^m) = mx^{m-1} d(xm)=mxm1
而我们定义的 Δ \Delta Δ 算子,似乎却不行
Δ ( x 2 ) = ( x + 1 ) 2 − x 2 = 2 x + 1 ≠ 2 ( x + 1 ) \Delta (x^2) = (x+1)^2 - x^2 = 2x + 1 \ne2(x+1) Δ(x2)=(x+1)2x2=2x+1̸=2(x+1)
不过,对于另一种“ m m m次幂”,却有着非凡的效果。定义
x m ‾ = x ( x − 1 ) ⋯ ( x − m + 1 ) ⏞ m , m ≥ 0 x^{\underline{m}} = \overbrace{x(x-1)\cdots(x-m+1)}^{m}, \quad m \ge 0 xm=x(x1)(xm+1) m,m0
注意 x x x 的上标 m m m 中有一个下划线,它表示等式右边这 m m m 个因子是阶梯般地”向下再向下“。相应地,还有“向上再向上”的定义法
x m ‾ = x ( x + 1 ) ⋯ ( x + m − 1 ) ⏞ m , m ≥ 0 x^{\overline{m}} = \overbrace{x(x+1)\cdots(x+m-1)}^{m}, \quad m \ge 0 xm=x(x+1)(x+m1) m,m0
m = 0 m = 0 m=0时,我们有 x 0 ‾ = x 0 ‾ = 1 x^{\underline{0}} = x^{\overline{0}} = 1 x0=x0=1,因为不含任何因子的乘积定义为1。我们一般称 x m ‾ x^{\underline{m}} xm下降阶乘幂(falling factorial power), x m x^{\over{m}} xm上升阶乘幂(rising factorial power)。特别的, n ! = n n ‾ = 1 n ‾ n!=n^{\underline{n}} =1^{\overline{n}} n!=nn=1n
现在,来尝试对下降阶乘幂求差分:
Δ x m ‾ = ( x + 1 ) m ‾ − x m ‾ = ( x + 1 ) x ⋯ ( x − m + 2 ) − x ⋯ ( x − m + 2 ) ( x − m + 1 ) = m x ( x − 1 ) ⋯ ( x − m + 2 ) = m x m − 1 ‾ \begin{aligned} \Delta x^{\underline{m}} &= (x + 1)^{\underline{m}} - x^{\underline{m}}\\ &=(x+1)x\cdots(x-m+2)-x\cdots(x-m+2)(x-m+1)\\ &=mx(x-1)\cdots(x-m+2)\\ &=mx^{\underline{m-1}} \end{aligned} Δxm=(x+1)mxm=(x+1)x(xm+2)x(xm+2)(xm+1)=mx(x1)(xm+2)=mxm1
恰好地,这正能与无限微积分公式 d ( x m ) = m x m − 1 {\rm d}(x^m) = mx^{m-1} d(xm)=mxm1 相媲美。

继续,我们来考虑 Δ \Delta Δ 的逆运算, 便是我们的求和算子 ∑ \sum ,类似于不定积分,我们可以导出不定和式:
g ( x ) = Δ f ( x )   i f   a n d   o n l y   i f   ∑ g ( x ) δ x = f ( x ) + C g(x) = \Delta f(x) {\rm \ if\ and\ only\ if\ } \sum g(x)\delta x = f(x) + C g(x)=Δf(x) if and only if g(x)δx=f(x)+C
不定积分中, C C C 是任意常数,而不定和式中的 C C C 则满足 p ( x + 1 ) = p ( x ) p(x+1) = p(x) p(x+1)=p(x) 的任意一个 p ( x ) p(x) p(x)。此外,我们还能模仿出类似于定积分的确定和式:
∑ a b g ( x ) δ x = f ( x ) ∣ a b = f ( b ) − f ( a ) \sum_{a}^{b} g(x) \delta x = f(x){\big |}_a^b = f(b) - f(a) abg(x)δx=f(x)ab=f(b)f(a)

使用数学归纳法使上式更直观化,并理解其意义:

  1. b = a b = a b=a,得到
    ∑ a a g ( x ) δ x = f ( a ) − f ( a ) = 0 \sum_{a}^{a} g(x) \delta x = f(a) - f(a) = 0 aag(x)δx=f(a)f(a)=0
  2. b = a + 1 b = a + 1 b=a+1,得到
    ∑ a a + 1 g ( x ) δ x = f ( a + 1 ) − f ( a ) = g ( a ) \sum_{a}^{a + 1} g(x) \delta x = f(a + 1) - f(a) = g(a) aa+1g(x)δx=f(a+1)f(a)=g(a)
  3. b = b + 1 b = b + 1 b=b+1,得到
    ∑ a b + 1 g ( x ) δ x − ∑ a b g ( x ) δ x = ( f ( b + 1 ) − f ( a ) ) + ( f ( b ) − f ( a ) ) = g ( b ) \begin{aligned} \sum_{a}^{b + 1} g(x) \delta x - \sum_{a}^{b} g(x) \delta x&= (f(b + 1) - f(a)) + (f(b) - f(a)) \\ &=g(b) \end{aligned} ab+1g(x)δxabg(x)δx=(f(b+1)f(a))+(f(b)f(a))=g(b)

因此, ∑ a b g ( x ) δ x = ∑ a b − 1 g ( x ) \sum_{a}^{b} g(x) \delta x = \sum_{a}^{\red{b - 1}}g(x) abg(x)δx=ab1g(x)。与无限积分不同的是,这里我求和时将抛去上限。

至此,我们可以对求和有一个新的认识了。首先,刚才已经证明 Δ x m ‾ = m x m − 1 ‾ \Delta x^{\underline{m}} = mx^{\underline{m-1}} Δxm=mxm1,那么反过来便有
∑ 0 ≤ k ≤ n k m ‾ = k m + 1 ‾ m + 1 ∣ 0 n + 1 = ( n + 1 ) m + 1 ‾ m + 1 \red{\sum_{0 \le k \le n }{k^{\underline m}} = \frac{k^{\underline{m+1}}}{m+1} \bigg |_{0}^{n + 1} = \frac{(n+1)^{\underline {m+1}}}{m+1}} 0knkm=m+1km+10n+1=m+1(n+1)m+1

  1. m = 1 m = 1 m=1,得到
    ∑ 0 ≤ k ≤ n k 1 ‾ = ∑ 0 ≤ k ≤ n k = ( n + 1 ) 2 ‾ 2 = ( n + 1 ) n 2 \begin{aligned} \sum_{0 \le k \le n }{k^{\underline 1}} &= \sum_{0 \le k \le n }{k} \\ &= \frac{(n+1)^{\underline {2}}}{2}\\ &= \frac{(n+1)n}{2} \end{aligned} 0knk1=0knk=2(n+1)2=2(n+1)n
    这就是连续自然和公式,进一步地
  2. m = 2 m=2 m=2,根据 k 2 = k 2 ‾ + k 1 ‾ k^2=k^{\underline{2}} + k^{\underline{1}} k2=k2+k1
    ∑ 0 ≤ k ≤ n k 2 = ∑ 0 ≤ k ≤ n k 2 ‾ + ∑ 0 ≤ k ≤ n k 1 ‾ = ( n + 1 ) 3 ‾ 3 + ( n + 1 ) 2 ‾ 2 = 1 3 [ ( n + 1 ) n ( n − 1 ) + 3 2 ( n + 1 ) n ] = 1 3 ( n + 1 ) ( n + 1 2 ) n \begin{aligned} \sum_{0 \le k \le n }{k^2} &=\sum_{0 \le k \le n }{k^{\underline 2}} + \sum_{0 \le k \le n }{k^{\underline 1}}\\ &= \frac{(n+1)^{\underline 3}}{3} + \frac{(n+1)^{\underline {2}}}{2}\\ &= \frac{1}{3} \left [(n+1)n(n-1)+ \frac{3}{2}(n + 1)n\right ]\\ &=\frac{1}{3}(n+1)(n+\frac{1}{2})n \end{aligned} 0knk2=0knk2+0knk1=3(n+1)3+2(n+1)2=31[(n+1)n(n1)+23(n+1)n]=31(n+1)(n+21)n

我们用新的方法再一次求得了连续自然数的平方和公式。此外,连续自然数的 n n n 阶和也能以此递推。

这里只记录了正指数的下降幂,关于负指数下降幂的相关讨论参考《具体数学(第三版)》的 2.6 节后半部分。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值