DataFrame的级联合并操作

import pandas as pd
import numpy as np

级联操作

  • pd.concat

pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:

objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False
  • 匹配级联

df1 = pd.DataFrame(data=np.random.randint(0,100,size=(4,3)),columns=[‘A’,‘B’,‘C’])
df1
在这里插入图片描述

df2 = pd.DataFrame(data=np.random.randint(0,100,size=(4,4)),columns=[‘A’,‘B’,‘C’,‘D’])
df2
在这里插入图片描述

  • 匹配级联:将多个df进行横向或者纵向拼接的时候,df的行列索引是一致

pd.concat((df1,df1),axis=0)

### Pandas DataFrame 数据筛选方法 在处理 `pandas` 的 `DataFrame` 时,数据筛选是一项常见的操作。通过多种方式可以实现基于不同条件的数据过滤。 对于简单的布尔索引,可以直接利用比较运算符与列名组合完成筛选工作。例如,在已有的 `data` 中寻找特定范围内的数值: ```python import pandas as pd import numpy as np # 创建示例 DataFrame data = pd.DataFrame(np.arange(16).reshape(4, 4), index=list('abcd'), columns=list('ABCD')) print("原始数据:") print(data) filtered_data = data[data['A'] > 5] # 筛选出 A 列大于 5 的行 print("\n筛选后的数据 (A 列>5):") print(filtered_data) ``` 当需要更复杂的逻辑判断时,可以通过定义自定义函数结合 `.apply()` 方法来进行多条件联合筛选[^3]。下面的例子展示了如何应用带有参数的 Lambda 表达式来执行这一过程: ```python def zustand(row): """返回 True 或 False 来决定是否保留该行""" return row['B'] % 2 == 0 and row['C'] >= 7 complex_filtered_data = data[data.apply(lambda row: zustand(row), axis=1)] print("\n复杂条件下筛选的结果:") print(complex_filtered_data) ``` 除了上述两种基本形式外,还可以采用其他高技术如 `query()` 方法简化语法结构;或是借助于外部库(比如 Numexpr)提高性能表现。这些工具使得即使面对非常规需求也能轻松应对。 #### 使用 query() 进行简洁表达 ```python simple_query_result = data.query('A > 5 & B < 9') print("\nsimple_query_result:") print(simple_query_result) ``` 此命令实现了相同的功能——选取那些满足 “A 大于 5 且 B 小于 9” 的记录,但是其可读性和编写效率都得到了显著提升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ak2111

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值