pandas之DataFrame的级联、合并操作

本文详细介绍了Pandas DataFrame的级联和合并操作,包括pd.concat函数的匹配和不匹配级联,以及append函数的使用。此外,还讨论了merge函数的一对一、一对多和多对多合并,强调了列名冲突处理和连接方式的选择。
摘要由CSDN通过智能技术生成

今天讲的是pandas之DataFrame的级联、合并操作。

1、级联操作(就是将多个DataFrame进行横向或者纵向的拼接):

	pd.concat()
	pd.append()

pandas使用pd.concat函数,这个与np.concatenate函数类似,只是多了一些参数:

	objs
	axis=0
	keys
	join='outer'/'inner':这个参数表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配到的项级联到一起,不匹配的项不级联,join的默认值是"outer"
	ignore_index = False

首先是日常的导入库
在这里插入图片描述
级联是分匹配级联与不匹配级联两种,匹配级联则是我们级联的DataFrame行列索引完全一样。
比如说我们创建两个DataFrame,
在这里插入图片描述
我们将两个df1级联则为匹配级联,会成为这样:(一个是行一个是列)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值