在DeepSeek狂欢的当下,我们需要冷静反思。作为优化或蒸馏模型(也可能两者都不是),当前技术范式存在一个致命缺陷:强逻辑性的虚假信息频繁生成,而此类信息因逻辑自洽的外衣更具迷惑性。非专业人员既缺乏验证能力,也难以抵御其系统性风险(这一现象已被实证研究反复验证)。若无基于数学推理的形式化技术突破,人工智能向现实需求逼近的进程,仍将深陷“算力军备竞赛”的技术路径依赖——高端芯片堆叠、高能耗运行、超大规模资本投入,仍是产业宿命。
一、逻辑性虚假信息的生成机制现代大语言模型通过注意力机制实现语义建模,其生成逻辑本质是概率路径遍历的产物。研究表明(Wei et al., 2022),当模型完成超过三步的链式推理时,生成内容的逻辑正确率随步长呈指数衰减。这种现象的根源在于:训练数据的结构性缺陷:预训练语料中隐含的逻辑错误、事实矛盾无法被概率模型有效识别。证据链解耦困境:模型的上下文感知局限于局部窗口(Brown et al., 2020),难以构建全局一致性验证。奖励溃缩风险:强化学习阶段的偏好对齐可能改善表层表述,却牺牲深层逻辑的稳健性(Ganguli et al., 2023)。值得注意的是,此类信息往往呈现逻辑外壳与错误内核的高度耦合:模型可利用正确的三段论结构推导出错误结论,或通过精确的数值计算包装假设前提(见图1)。这种“逻辑精确的谬误”对非专业人员构成特殊威胁。
二、人工验证的系统性困境认知科学中的双重加工理论(Kahneman, 2011)揭示了人类验证能力的局限性:面对逻辑严密的错误信息,耗能的系统2认知易被系统1直觉快速覆盖。实验数据显示(Pennycook et al., 2021),当被